Spatial linkages with a straight line trajectory

Hans-Peter Schröcker
(joint work with J. Schicho)

Supported by the FWF: Project P 23831-N13.

Unit Geometry and CAD, University Innsbruck

ÖMG-DMV-Congress
Innsbruck, September 23–27, 2013
Examples of straight line linkages

Factorization of motion polynomials

Synthesis of new straight line linkages
Peaucellier’s inversor (1864)
Sarrus’ linkage (1853)
Composition of planar and spherical four-bar linkages

Pavlin G. and Wohlhart K.
On Straight-Line Space Mechanisms
Our contribution

New straight line linkages:

- truly spatial, not composed of planar and spherical parts (like Pavlin and Wohlhart’s)
- non-translational end-effector motion (like Sarrus’)
- single-looped (like Sarrus, unlike Pavlin and Wohlhart’s), six revolute or translational joints
Dual quaternions and kinematics

Theorem

The group $\text{SE}(3)$ of rigid body displacements is isomorphic to the group of unit dual quaternions modulo ± 1.
Theorem
The group SE(3) of rigid body displacements is isomorphic to the group of unit dual quaternions modulo ±1.

Quaternions \(\mathbb{H} \)

\[q = x_0 + x_1 i + x_2 j + x_3 k \]

Multiplication rules

\[i^2 = j^2 = k^2 = ijk = -1 \]
Dual quaternions and kinematics

Theorem
The group $\text{SE}(3)$ of rigid body displacements is isomorphic to the group of unit dual quaternions modulo ± 1.

Dual quaternions $\mathbb{D}H$

$$q = x_0 + x_1 i + x_2 j + x_3 k + \varepsilon (y_0 + y_1 i + y_2 j + y_3 k) = x + \varepsilon y \quad \text{(primal and dual part)}$$

Multiplication rules

$$i^2 = j^2 = k^2 = ijk = -1; \quad \varepsilon^2 = 0; \quad i\varepsilon = \varepsilon i, \quad j\varepsilon = \varepsilon j, \quad k\varepsilon = \varepsilon k$$
Dual quaternions and kinematics

Theorem
The group SE(3) of rigid body displacements is isomorphic to the group of unit dual quaternions modulo ± 1.

Dual quaternions \mathbf{DH}

\[q = x_0 + x_1 \mathbf{i} + x_2 \mathbf{j} + x_3 \mathbf{k} + \varepsilon (y_0 + y_1 \mathbf{i} + y_2 \mathbf{j} + y_3 \mathbf{k}) \]
\[= x + \varepsilon y \quad \text{(primal and dual part)} \]

Multiplication rules
\[i^2 = j^2 = k^2 = ijk = -1; \quad \varepsilon^2 = 0; \quad i \varepsilon = \varepsilon i, \; j \varepsilon = \varepsilon j, \; k \varepsilon = \varepsilon k \]

Conjugation and norm
\[\bar{q} = x_0 - x_1 \mathbf{i} - x_2 \mathbf{j} - x_3 \mathbf{k} + \varepsilon (y_0 - y_1 \mathbf{i} - y_2 \mathbf{j} - y_3 \mathbf{k}) = \bar{x} + \varepsilon \bar{y} \]
\[\|q\| = q \bar{q} = x_0^2 + x_1^2 + x_2^2 + x_3^2 + 2\varepsilon (x_0 y_0 + x_1 y_1 + x_2 y_2 + x_3 y_3) \]
Motion polynomials

Definition
A left polynomial $C \in \mathbb{DH}[t]$ is called a motion polynomial if $C \overline{C} \in \mathbb{R}[t]$ (plus some technical assumptions).
Motion polynomials

Definition
A left polynomial $C \in \mathbb{DH}[t]$ is called a \textit{motion polynomial} if $C\overline{C} \in \mathbb{R}[t]$ (plus some technical assumptions).

Motion polynomials parametrize rational motions.
Definition
A left polynomial $C \in \mathbb{DH}[t]$ is called a motion polynomial if $\bar{C}C \in \mathbb{R}[t]$ (plus some technical assumptions).

Motion polynomials parametrize rational motions.

Theorem (Hegedüs, Schicho, Schröcker 2013)
In general, a monic motion polynomial $C \in \mathbb{DH}[t]$ of degree n can be factorized in $n!$ ways as

$$C(t) = (t - h_n) \cdots (t - h_2)(t - h_1)$$

with rotation quaternions $h_1, h_2, \ldots, h_n \in \mathbb{DH}.$
Kinematic interpretation

\((t_1 - h_1), \quad t_1 \in \mathbb{R}\)
Kinematic interpretation

$$(t_2 - h_2)(t_1 - h_1), \quad t_1, t_2 \in \mathbb{R}$$
Kinematic interpretation

$$(t_n - h_n) \cdots (t_2 - h_2)(t_1 - h_1), \quad t_1, t_2, \ldots, t_n \in \mathbb{R}$$

Corollary

A generic rational motion can be generated in $n!$ ways as end-effector motion of an open nR chain.
Kinematic interpretation
More on motion polynomial factorization

motion polynomial \[C = t^3 + c_2 t^2 + c_1 t + c_0 \in \mathbb{D}[t] \]
norm polynomial \[C \overline{C} = M_1 M_2 M_3 \in \mathbb{R}[t] \]
More on motion polynomial factorization

motion polynomial \(C = t^3 + c_2 t^2 + c_1 t + c_0 \in \mathbb{D}\mathbb{H}[t] \)

norm polynomial \(C\overline{C} = M_1 M_2 M_3 \in \mathbb{R}[t] \)

▷ \(M_1, M_2, M_3 \) quadratic, non-negative
More on motion polynomial factorization

motion polynomial \[C = t^3 + c_2 t^2 + c_1 t + c_0 \in \mathbb{DH}[t] \]

norm polynomial \[\overline{CC} = M_1 M_2 M_3 \in \mathbb{R}[t] \]

- \(M_1, M_2, M_3 \) quadratic, non-negative
- \(C = (t - h_3)(t - h_2)(t - h_1) \) and each \(h_i \) “corresponds” to one \(M_j \).
More on motion polynomial factorization

motion polynomial \(C = t^3 + c_2 t^2 + c_1 t + c_0 \in DH[t] \)

norm polynomial \(\mathcal{C} = M_1 M_2 M_3 \in \mathbb{R}[t] \)

- \(M_1, M_2, M_3 \) quadratic, non-negative
- \(C = (t - h_3)(t - h_2)(t - h_1) \)
- and each \(h_i \) “corresponds” to one \(M_j \).
- factorizations \(\approx \) permutations of \(\{M_1, M_2, M_3\} \).
motion polynomial \[C = t^3 + c_2 t^2 + c_1 t + c_0 \in \mathbb{D}H[t] \]

norm polynomial \[\overline{C}C = M_1 M_2 M_3 \in \mathbb{R}[t] \]

- \(M_1, M_2, M_3\) quadratic, non-negative
- \(C = (t - h_3)(t - h_2)(t - h_1)\)
 and each \(h_i\) “corresponds” to one \(M_j\).
- factorizations \(\approx\) permutations of \(\{M_1, M_2, M_3\}\).
- \(M_j\) determines
 - rotation angle \(\omega_i(t)\)
 - joint type (revolute or translational)
Synthesis of straight line linkages

Idea

1. Find cubic motion polynomial in constraint variety V of all displacements that map
 - point $p = 0$ to
 - straight line $\ell = \{ui \mid u \in \mathbb{R}\}$.

2. Factor motion polynomial.

3. Construct linkage.
Linkage synthesis

Constraint variety for $p \in \ell$

\[V = \{ x + \varepsilon y \in \mathbb{DH} \mid y \cong -ix \} \]
(a $P^3 \times P^1$ Segre variety)

(Dual part is projective image of primal part.)
Linkage synthesis

Constraint variety for $p \in \ell$

$$V = \{x + \varepsilon y \in \mathbb{DH} \mid y \cong -ix\} \quad (a \, P^3 \times P^1 \text{ Segre variety})$$

(Dual part is projective image of primal part.)

Cubic motion polynomial in V

$$C = R - i\varepsilon R, \quad R \in \mathbb{H}[t], \quad \deg R = 3$$
Linkage synthesis

Constraint variety for \(p \in \ell \)

\[V = \{ x + \varepsilon y \in \mathbb{D} \mathbb{H} \mid y \cong -i \varepsilon x \} \quad \text{(a } P^3 \times P^1 \text{ Segre variety)} \]

(Dual part is projective image of primal part.)

Cubic motion polynomial in \(V \)

\[C = R - i \varepsilon R, \quad R \in \mathbb{H}[t], \quad \deg R = 3 \]

Norm polynomial

\[C \overline{C} = \| R \| \]
Linkage synthesis

Constraint variety for \(p \in \ell \)

\[
V = \{ x + \epsilon y \in \mathbb{DH} \mid y \cong -ix \} \quad \text{(a} \ P^3 \times P^1 \ \text{Segre variety)}
\]

(Dual part is projective image of primal part.)

Cubic motion polynomial in \(V \)

\[
C = R - i\epsilon R, \quad R \in \mathbb{H}[t], \quad \text{deg} \ R = 3
\]

Norm polynomial

\[
\overline{C}C = ||R||
\]

Trajectory of \(p = 0 \)

\[
p' = 0
\]

Spherical linkage with trivial straight line trajectory!
Linkage synthesis

Constraint variety for $p \in \ell$

$$V = \{x + \varepsilon y \in \mathbb{DH} \mid y \cong -ix\} \quad (a \ P^3 \times P^1 \ Segre \ variety)$$

Cubic motion polynomials in V

$$C = \xi R - \eta i \varepsilon R$$

$R \in \mathbb{H}[t], \deg(R) = d < 3; \quad \xi, \eta \in \mathbb{R}[t], \deg \xi, \deg \eta \leq 3 - d$
Linkage synthesis

Constraint variety for $p \in \mathcal{l}$

$$ V = \{ x + \varepsilon y \in \mathbb{DH} | y \cong -ix \} \quad (a \ P^3 \times P^1 \ Segre \ variety) $$

Cubic motion polynomials in V

$$ C = \xi R - \eta i \varepsilon R $$

$R \in \mathbb{H}[t], \quad \deg(R) = d < 3; \quad \xi, \eta \in \mathbb{R}[t], \quad \deg \xi, \deg \eta \leq 3 - d$

Norm polynomial

$$ C \overline{C} = \xi^2 \| R \| $$
Linkage synthesis

Constraint variety for \(p \in \mathcal{l} \)

\[V = \{ x + \varepsilon y \in \mathbb{D} | y \equiv -ix \} \] (a \(P^3 \times P^1 \) Segre variety)

Cubic motion polynomials in \(V \)

\[C = \xi R - \eta i \varepsilon R \]

\(R \in \mathbb{H}[t], \quad \deg(R) = d < 3; \quad \xi, \eta \in \mathbb{R}[t], \quad \deg \xi, \deg \eta \leq 3 - d \)

Norm polynomial

\[C\bar{C} = \xi^2 \| R \| \]

Trajectory of \(p = 0 \)

\[p' = \frac{2\eta}{\xi} i \]
Discussion of solutions

\[C = \xi R - \eta i \epsilon R, \quad CC = \xi^2 ||R||, \quad p' = \frac{2\eta}{\xi} i \]

Case 1: \(\deg R = 1 \)

- \(R = t - h, \quad h \in \mathbb{H} \)
- \(\xi = (t - \xi_0)(t - \xi_1) \) with \(\xi_0, \xi_1 \in \mathbb{R} \)
- \(CC = (t - \xi_0)^2(t - \xi_1)^2||R|| \)

Only four different factorizations:

\[R_1T_1T_2, \quad T_xR_2T_2, \quad T'_xR_3T_1, \quad T_xT'_xR \]

\(R_i \ldots \) rotation \(||h|| \), \(T_i \ldots \) translation, \(T_x, T'_x \ldots \) translation \(||i|| \)
Discussion of solutions

\[
C = \xi R - \eta i \varepsilon R, \quad C \overline{C} = \xi^2 \|R\|, \quad p' = \frac{2\eta}{\xi} i
\]

Case 2: \(\deg R = 2\)

- \(R = (t - h_1)(t - h_2) = (t - k_1)(t - k_2); \quad h_1, h_2, k_1, k_2 \in \mathbb{H}\)
- \(\xi = t - \xi_0\)
- \(C \overline{C} = (t - \xi_0)^2 M_2 M_3\)

Six different factorizations:

- \(R_1 R_2 T_1, \quad R_3 R_4 T_1, \quad R_1 T_2(t - h_2), \quad R_3 T_3(t - k_2), \quad T_x(t - h_1)(t - h_2), \quad T_x(t - k_1)(t - k_2)\)

\(R_i \ldots \text{rotation} \parallel h, \quad T_i \ldots \text{translation}, \quad T_x \ldots \text{translation} \parallel i\)
Solution (RPRRPR linkage)
Conclusion

In the talk:
- new spatial straight line linkages by factorization of motion polynomials

For the paper:
- discussion of other combinations

In the future:
- linkage synthesis by interpolation in constraint varieties