Inflection circle

Hans-Peter Schröcker

July 2010
Consider one-parametric motion of a moving frame with respect to a fixed frame in the Euclidean plane. A point x in the moving frame has the trajectory $x(t)$ in the fixed frame.

This worksheet demonstrates that the locus of points x in the moving frame whose trajectory $x(t)$ has an inflection point at a specific time t is a circle - the inflection circle.
[$>$ restart: with (LinearAlgebra) :
[Define the motion, first rotation matrix, then translation vector:

$$
\begin{align*}
& >A(t):=\operatorname{Matrix}([[\cos (\operatorname{phi}(t)),-\sin (\operatorname{phi}(t))] \text {, } \\
& \text { [sin(phi(t)), cos(phi(t))]]); } \\
& A(t):=\left[\begin{array}{cc}
\cos (\phi(t)) & -\sin (\phi(t)) \\
\sin (\phi(t)) & \cos (\phi(t))
\end{array}\right] \tag{1}\\
& =\mathrm{a}(\mathrm{t}):=\operatorname{Vector}([\mathrm{a} 1(\mathrm{t}), \mathrm{a} 2(\mathrm{t})]) \text {; } \\
& a(t):=\left[\begin{array}{l}
a 1(t) \\
a 2(t)
\end{array}\right] \tag{2}\\
& \text { TTrajectory of } x=\left(x_{1}, x_{2}\right) \text { : } \\
& >x(t):=A(t) \text {. Vector }([x 1, x 2])+a(t) \text {; } \\
& x(t):=\left[\begin{array}{l}
\cos (\phi(t)) x 1-\sin (\phi(t)) x 2+a 1(t) \\
\sin (\phi(t)) x 1+\cos (\phi(t)) x 2+a 2(t)
\end{array}\right]
\end{align*}
$$

[First and second derivative vectors with respect to time t :

$$
\begin{align*}
& {[>d x(t):=\operatorname{map}(\operatorname{diff}, x(t), t) \text {; }} \\
& d x(t):=\left[\begin{array}{l}
-\sin (\phi(t))\left(\frac{\mathrm{d}}{\mathrm{~d} t} \phi(t)\right) x 1-\cos (\phi(t))\left(\frac{\mathrm{d}}{\mathrm{~d} t} \phi(t)\right) x 2+\frac{\mathrm{d}}{\mathrm{~d} t} a 1(t) \\
\cos (\phi(t))\left(\frac{\mathrm{d}}{\mathrm{~d} t} \phi(t)\right) x 1-\sin (\phi(t))\left(\frac{\mathrm{d}}{\mathrm{~d} t} \phi(t)\right) x 2+\frac{\mathrm{d}}{\mathrm{~d} t} a 2(t)
\end{array}\right] \tag{4}\\
& =>\operatorname{ddx}(t):=\operatorname{map}(\operatorname{diff}, d x(t), t) \text {; } \\
& d d x(t):=\left[\left[-\cos (\phi(t))\left(\frac{\mathrm{d}}{\mathrm{~d} t} \phi(t)\right)^{2} x 1-\sin (\phi(t))\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \phi(t)\right) x 1\right.\right. \tag{5}\\
& \left.+\sin (\phi(t))\left(\frac{\mathrm{d}}{\mathrm{~d} t} \phi(t)\right)^{2} x 2-\cos (\phi(t))\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \phi(t)\right) x 2+\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} a l(t)\right], \\
& {\left[-\sin (\phi(t))\left(\frac{\mathrm{d}}{\mathrm{~d} t} \phi(t)\right)^{2} x 1+\cos (\phi(t))\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \phi(t)\right) x 1-\cos (\phi(t))\left(\frac{\mathrm{d}}{\mathrm{~d} t} \phi(t)\right)^{2} x 2\right.}
\end{align*}
$$

$$
\left.\left.-\sin (\phi(t))\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} \phi(t)\right) x 2+\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} a 2(t)\right]\right]
$$

[The condition for an inflection point is linear dependence of the first and second derivative vector:
[$>$ w := Determinant (Matrix ([dx(t), ddx(t)])):
We do not display this lengthy expression. A simply analysis of its degree in x_{1} and x_{2} and the coefficients to x_{1}^{2}, x_{2}^{2} is enough to show that the sought locus is a circle:
$>$ degree (w, \{x1, x2\}); 2
$[>\operatorname{simplify}(\operatorname{coeff}(w, x 1,2))$; simplify $(\operatorname{coeff}(w, x 2,2))$;
$\left(\frac{\mathrm{d}}{\mathrm{d} t} \phi(t)\right)^{3}$
$\left(\frac{\mathrm{d}}{\mathrm{d} t} \phi(t)\right)^{3}$
$[>\operatorname{coeff}(\operatorname{coeff}(w, x 1,1), x 2,1) ;$ 0

