A Cross-Ratio Criterion for the Circular Position of Points in Space

Hans-Peter Schröcker

July 2010
$\overline{=}>$ restart: with(LinearAlgebra) :
We want to show that four points a, b, c, and $d \in \mathbb{R}^{3} \subset \mathbb{H}$ (the division ring of quaternions) lie on a circle or a straight line if and only if the expression
(*) $\quad(a-b) \cdot(b-c)^{-1} \cdot(c-d) \cdot(d-a)$
is real. The points in \mathbb{R}^{3} are embedded as $(0, a),(0, b)$ etc. into \mathbb{H}.
Equation (*) is a cross-ratio-like expression. In this context, we simply call it cross-ratio.
Clearly, the cross-ratio (*) is invariant with respect to translations ($x \mapsto x+t$) and scaling ($x \mapsto \lambda x$). Therefore, it is no loss of generality to assume that a, b, c, and d are contained in the unit sphere $S^{2} \subset \mathbb{R}^{3} \subset \mathbb{H}$. We compute the cross-ratio for this special case.
Procedure for quaternion multiplication:

```
> qm := proc(p, q)
    return Vector([p[1]*q[1]-p[2]*q[2]-p[3]*q[3]-p[4]*q[4],
    p[1]*q[2]+p[2]*q[1]+p[3]*q[4]-p[4]*q[3],
    p[1]*q[3]-p[2]*q[4]+p[3]*q[1]+p[4]*q[2],
    p[1]*q[4]+p[2]*q[3]-p[3]*q[2]+p[4]*q[1]]):
    end proc:
[Procedure for conjugate quaternion. Note that conjugation equals inversion for quaternions on S}\mp@subsup{S}{}{2
> qc := proc(p) return Vector([p[1], -p[2], -p[3], -p[4]]): end
    proc:
```

Now we make use of a facts which are well-known or easy to see:

1. The complex plane can be embedded into the quaternion division ring $(\mathbb{H},+, \cdot)$ via $(x+\mathrm{i} \cdot y) \hookrightarrow(x, y, 0,0)$.
2. Expression (*) is real for concircular or collinear points in the complex plane.
3. Stereographic projection maps concircular points of S^{2} onto concircular or collinear point in \mathbb{R}^{2}.

Thus, we may start with four arbitrary points in \mathbb{R}^{2}, compute their (complex) cross-ratio and compare it with the cross-ratio of their stereographic pre-images on S^{2}.

```
> a := Vector([xa, ya, 0, 0]):
    b := Vector([xb, yb, 0, 0]):
    c := Vector([xc, yc, 0, 0]):
    d := Vector([xd, yd, 0, 0]):
    stereographicPreImage := proc(X)
    local d:
    d := 1+X[1]^2 + X[2]^2:
```

 return 1/d * Vector ([0, 2*X[1], 2*X[2], \(-1+x[1] \wedge 2+x[2] \wedge 2])\)
 :
 end proc:
 \(>\) A := stereographicPreImage (a):
 B := stereographicPreImage (b) :
 C := stereographicPreImage (c) :
 unprotect (D) :
 D := stereographicPreImage (d) :
 $>\mathrm{q}:=\mathrm{qm}_{\mathrm{m}}\left(\mathrm{qm}(\mathrm{a}-\mathrm{b}, \mathrm{qc}(\mathrm{b}-\mathrm{c})), \mathrm{qm}_{\mathrm{m}}(\mathrm{c}-\mathrm{d}, \mathrm{qc}(\mathrm{d}-\mathrm{a}))\right):$
$\mathrm{Q}:=\mathrm{qm}\left(\mathrm{qm}(\mathrm{A}-\mathrm{B}, \mathrm{qc}(\mathrm{B}-\mathrm{C}))\right.$, $\left.\mathrm{qm}_{\mathrm{m}}(\mathrm{C}-\mathrm{D}, \mathrm{qc}(\mathrm{D}-\mathrm{A}))\right)$:

Now we discuss the vanishing of the second component of q and the second, third, and fourth component of Q.
[> q2 := numer (normal (q[2])):
Q2 := map(numer, map(normal, Q)):
$>$ simplify(1/(16*q2) * Q2[2..4]);

$$
\left[\begin{array}{c}
-2 x a \\
-2 y a \\
1-x a^{2}-y a^{2}
\end{array}\right]
$$

We see that q_{2} is a factor of each of the relevant components of Q_{2}. Its vanishing implies $Q \in \mathbb{R}$.
Conversely, if $Q \in \mathbb{R}, q_{2}$ must vanish because not all components of (1) can vanish simultaneously.

