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Lecture 6:
Cyclidic Net Parametrization



Net parametrization

Problem:
Given a discrete structure, find a smooth parametrization that
preserves essential properties.

Examples:

I conjugate parametrization of conjugate nets
I principal parametrization of circular nets
I principal parametrization of planes of conical nets
I principal parametrization of lines of HR-congruence
I . . .



Dupin cyclides

I inversion of torus, revolute
cone or revolute cylinder

I curvature lines are circles in
pencils of planes

I tangent sphere and tangent
cone along curvature lines

I algebraic of degree four,
rational of bi-degree (2, 2)



Dupin cyclide patches as rational Bézier surfaces



Supercyclides (E. Blutel, W. Degen)

I projective transforms of Dupin cyclides (essentially)
I conjugate net of conics.
I tangent cones



Cyclides in CAGD

I surface approximation (Martin, de Pont, Sharrock 1986)
I blending surfaces (Böhm, Degen, Dutta, Pratt, . . . ; 1990er)

Advantages:
I rich geometric structure
I low algebraic degree
I rational parametrization of bi-degree (2, 2):

I curvature line (or conjugate lines)
I circles (or conics)

Dupin cyclides:
I offset surfaces are again Dupin cyclides
I square root parametrization of bisector surface



Rational parametrization (Dupin cyclides)
Trigonometric parametrization (Forsyth; 1912)

Φ : f (θ,ψ) =
1

a − c cos θ cosψ

µ(c − a cos θ cosψ) + b2 cos θ
b sin θ(a − µ cosψ)
b sinψ(c cos θ− µ)


a, c,µ ∈ R; b =

√
a2 − c2

Representation as Bézier surface

1. θ = 2 arctan u, ψ = 2 arctan v

2. u 
α ′u +β ′

γ ′u + δ ′
, v 

α ′′v +β ′′

γ ′′v + δ ′′

3. Conversion to Bernstein basis

Problem:
A priori knowledge about surface position is necessary
(also with other approaches).



Cyclides as tensor-product Bézier surfaces

Every cyclide patch has a representation as tensor-product
Bézier patch of bi-degree (2, 2):

F(u, v) =

∑2
i=0

∑2
j=0 B2

i (u)B
2
j (v)wijpij∑2

i=0
∑2

j=0 B2
i (u)B

2
j (v)wij

, Bn
k (t) =

(
n
k

)
(1 − t)n−ktk

Aims:

I elementary construction of control points pij

I geometric properties of control net
I elementary construction of weights wij

I applications to CAGD and discrete differential geometry



The corner points

1. The four corner points p00, p02, p20, and p22 lie on a circle.

Reason:
This is true for the prototype parametrizations (torus, circular
cone, circular cylinder) and preserved under inversion.



The missing edge points

2.a The missing edge-points p01, p10, p12, p21 lie in the bisector
planes of their corner points.

2.b One pair of orthogonal edge tangents can be chosen
arbitrarily.

Reason:

I The edge curves are
circles.

I No contradiction because
of circularity of edge
vertices.

Conclusion
The corner tangent planes
envelope a cone of revolution.
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The central control point
3. The central control point p11 lies in all four corner tangent

planes.

Reason:
f (u, v) is conjugate parametrization ⇐⇒
fu, fv und fuv linear dependent

The quadrilaterals
I p00 p01 p10 p11,
I p01 p02 p12 p11,
I p10 p20 p21 p10,
I p12 p21 p22 p11

are planar (conjugate net).
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Parametrization of a circular/conical nets



Parametrization of a circular/conical nets



Parametrization of a circular/conical nets



Parametrization of a circular/conical nets



Parametrization of a circular/conical nets



Obvious properties of the control net
Concurrent lines:

I p00 ∨ p10,
I p01 ∨ p11,
I p02 ∨ p12.

Co-axial planes:
I p00 ∨ p10 ∨ p20,
I p01 ∨ p11 ∨ p21,
I p02 ∨ p12 ∨ p22.



Orthologic tetrahedra

I Non-corresponding sides
of the “x-axis tetrahedron”
and the “y-axis tetrahe-
dron” are orthogonal
(orthologic tetrahedra).

perspective-orthologic.3dm

I The four perpendiculars from the vertices of one
tetrahedron on the non-corresponding faces of the other
are concurrent.

I Orthology centers are perspective centers for a third
tetrahedron.



The control net as discrete Koenigs-net

I co-planar diagonal points:
(p00 ∨ p11)∩ (p01 ∨ p10),

(p01 ∨ p12)∩ (p02 ∨ p11),

(p10 ∨ p21)∩ (p11 ∨ p20),

(p11 ∨ p22)∩ (p12 ∨ p21).

I co-axial planes:

p00 ∨ p11 ∨ p02,

p10 ∨ p11 ∨ p12,

p20 ∨ p11 ∨ p22.

I a net of dual quadrilaterals
exists (corresponding edges
and non-corresponding
diagonals are parallel)
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Quadrilaterals of vanishing mixed area
 construction of discrete minimal surfaces.

H = −
A(F, S)
A(F)



The control net of the offset surface

Rich structure comprising circular net, conical net, and three
HR congruences:

I existence of offset HR congruence
I existence of orthogonal HR congruence



The control net of the offset surface
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The weight points

I neighboring control points pi, pj

I weights wi, wj

I weight point (Farin point)

gij =
wipi + wjpj

wi + wj

g01 g21

p0, w0 = 1

p1, w1 = sin α

p2, w2 = 1

2α



The weight points

Properties of weight points

I reconstruction of ratio of weights from weight points is
possible

I points in first iteration of rational de Casteljau’s algorithm
I weight points of an elementary quadrilateral are

necessarily co-planar

g01 g21

p0, w0 = 1

p1, w1 = sin α

p2, w2 = 1

2α
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Weight points on cyclidic patches
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Algorithm of de Casteljau =⇒
weight points of neighboring threads are perspective.



Weight points on cyclidic patches
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Dupin cyclides: One blue and one red weight point can be
chosen arbitrarily.



Weight points on cyclidic patches
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Supercyclides: Two blue and two red weight points on neigh-
boring edges can be chosen arbitrarily.



Determination by edge threads
Given:

I two edge strips
(control points, weights, apex of tangent cone)

I missing corner point dc-construction.cg3
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An auxiliary result

Given are two spatial quadri-
laterals with intersecting
corresponding edges:

The intersection points points
d0, d1, d2 und d3 are coplanar.
⇐⇒

The planes spanned by corre-
sponding lines intersect in a
point.

I The Theorem is self-dual (only one implication needs to
be shown).

I If all planes intersect in a point s, the two quadrilaterals
are perspective with center s.



Dupin cyclide patches

Patch of a Dupin cyclide, bounded by four circular arcs
Construction of control points

I Choose four points p00, p02, p22, p20 on a circle
I border points p01, p10, p12, p21 lie in bisector planes of

vertex points
I choose one pair of edge tangents arbitrarily
I find missing border points by reflections
I find central control point as intersection of edge tangent

planes

dc-net.3dm



Open research questions

I (parametrization of asymptotic nets with quadric patches)
I Ck conjugate parametrization of conjugate nets
I Ck principal parametrization of circular/conical nets and

HR-congruences
I parametrization preserving key features of the underlying

net
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