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Lecture 5:
Parallel Nets, Offset Nets and Curvature



Parallel nets

Definition
Let f : Zd → Rn be a conjugate net. A conjugate net f+ : Z→Rn

is called a parallel net (or a Combescure transform of f ) if
corresponding edges are parallel.

Remark
The theory of parallel nets
and offset nets as presented
below extends to quad
meshes of arbitrary
combinatorics.



Parallel nets and line congruences

Given are a conjugate net f and a parallel net f+:

=⇒ ` = f ∨ f+ is a discrete line congruence

Given are a conjugate net f and a discrete line congruence `
with f ∈ `:
=⇒ There exists a one-parameter family f+ of parallel nets

with f+ ∈ `.
=⇒ f+ is uniquely determined by its value at one point.



Offset nets

Given:

I conjugate net f
I parallel net f+

Definition
A parallel net f+ is called a vertex/face/edge offset net if
corresponding vertices/faces/edges are at constant distance d.



The vector space of parallel nets

Theorem
All conjugate nets parallel to a given conjugate net form a vector
space over R where addition and multiplication are defined
vertex-wise:

λf : Zd → Rn, i 7→ λf (i),

f + f+ : Zd → Rn, i 7→ f (i) + f+(i).

Definition
Let f and f+ be a pair of offset nets at constant distance d.
Then the Gauss image of f+ with respect to f is defined as

s =
1
d
(f+ − f ).



The smooth Gauss map for curves

I curvature ≈ ratio of arc-lengths
of Gauss image and curve



The smooth Gauss map for surfaces

Definition
Given a smooth surface M, denote by np the oriented unit
normal in p ∈M. The Gauss map of M is the map

n : M→ S2, p 7→ np.



The smooth Gauss map for surfaces

Definition
Given a smooth surface M, denote by np the oriented unit
normal in p ∈M. The Gauss map of M is the map

n : M→ S2, p 7→ np.

Properties:
I closely related to surface curvatures
I negative derivative −dn : Tp(M)→ Tnp(S2) is called the

shape operator



The Gauss image of offset nets

Theorem
The Gauss image of a vertex/face/edge offset net is a net

I whose vertices are contained in Sd,
I whose faces circumscribe Sd,
I whose edges are tangent to Sd.



Characterization of offset-nets

Corollary
A conjugate net f admits a vertex offset net f+ if and only if it is
circular.

Proof. Assume a vertex offset f+ exists =⇒ circular Gauss
image =⇒ original net is circular (angle criterion for circu-
larity).

Construction of vertex offset nets:
Assume f is circular: vertex-offset-net.3dm

1. Prescribe one vertex of f+

2. Construct Gauss image from one vertex and known edge
directions (unambiguous; no contradictions by
circularity).

3. Construct f+ from the Gauss image (unambiguous; no
contradictions).



Characterization of offset-nets

Corollary
A conjugate net f admits a face offset net f+ if and only if it is
conical.

Proof. Assume a face offset f+ exists =⇒ conical Gauss im-
age =⇒ original net is conical (angle criterion for conicality).

Construction of face offset nets:
Assume f is conical: face-offset-net.3dm

1. Prescribe one face of f+.

2. Construct other faces by offsetting (unambiguous; no
contradictions by conicality).



Characterization of offset-nets

Definition
A conjugate net is called a Koebe net, if its edges are tangent
to the unit sphere.

Corollary
A conjugate net f admits an edge offset net f+ if and only if it is
parallel to a Koebe net s.

Proof. Construction of f+ from f and s: edge-offset-net.3dm

f+ = f + d · s



Offset nets in architecture

I fewer edges for quad dominant meshes
I quadrilateral glass panels are cheaper
I less-steel, more glass
I torsion-free nodes
I existence of face or edge offset meshes

H. Pottmann, Y. Liu, J. Wallner, A. Bobenko, W. Wang
Geometry of multi-layer freeform structures for
architecture
ACM Trans. Graphics, vol. 26, no. 3, 1–1, 2007

support-structure.3dm



Discrete line congruences with offset properties

Definition
Two discrete line congruences ` and `+ are called parallel, if
corresponding lines are parallel.
They are called offset congruences if corresponding lines are
at constant distance as well.

Remark
The edges of an edge-offset net constitute a special example of
an offset congruence with planar elementary quadrilaterals.

Remark
Offset congruences occur in architecture of folded paper
strips.



Application: Design of closed folded strips

http://www.archiwaste.org/?p=1109

Institut für Konstruktion und Gestaltung, Universität Innsbruck:
Rupert Maleczek, Eda Schaur

Archiwaste:
Guillaume Bounoure, Chloe Geneveaux

http://www.archiwaste.org/?p=1109


Offset congruences

Theorem
All line congruences parallel to a given discrete line congruence `
form a vector space. Addition and multiplication are defined via
addition and multiplication of corresponding intersection points.

Definition
The Gauss image of two offset congruences ` and `+ at
distance d is defined as

s =
1
d
(`+ − `).

Theorem
A discrete line congruence ` admits an offset congruence if and only
if it is parallel and at constant distance to a discrete line congruence
whose lines are tangent to the unit sphere S2.



Elementary quadrilaterals of the Gauss image

Problem: Given two tangents A, B of S2 find lines X which

1. intersect A and B and

2. are tangent to S2.

Solution: The locus of possible points of tangency consists of
two circles through a and b.



Bi-arcs in the plane and on the sphere

a

b
A

B

j

biarc.ggb

B

H. Pottmann, J. Wallner
Computational Line Geometry
Springer (2001)

H. Stachel, W. Fuhs
Circular pipe-connections
Computers & Graphics 12 (1988), 53–57.



Elementary quadrilaterals of the Gauss image

Theorem
Let s be the Gauss image of a pair of offset congruences. An
elementary quadrilateral of s is either

1. the elementary quadrilateral of an HR-congruence or

2. something different (yet unnamed)

Remark
The geometry of offset congruences and metric aspects of
discrete line geometry are open research questions.



Curvature of a smooth curve

γ : I ⊂ R→ R3, t 7→ γ(t),

κ(t) =
‖γ̇(t)× γ̈(t)‖
‖γ̇(t)‖3 ,

l(γ) =
∫

I
‖γ̇(t)‖dt.
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I change of tangent direction per arc-length
I inverse radius of optimally approximating circle



Steiner’s formula

I convex curve γ ⊂ R2,
arc-length s, curvature κ(s)

I offset curve γt at distance t

l(γt) = l(γ) + t
∫
γ

κ(t)dt

γ(s)

γt(s)
t

Example: A circle

l(γt) = 2(r + t)π = 2rπ+ 2tπ = l(γ) + t
∫ 2rπ

0
r−1 dϕ



Steiner type curvatures in vertices
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ϕ4ϕ5
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2

ϕi 2 tan ϕi
2

I Assign curvature to vertices so that Steiner’s Theorem
remains true.

I The three possibilities are identical up to second order
terms:

2 sin ϕ2 = ϕ+O(ϕ3), ϕ = ϕ+O(ϕ3), 2 tan ϕ2 = ϕ+O(ϕ3).



Curvatures of a smooth surface

normal-curvature.3dm



Gaussian curvature as local area distortion

area A area A0

K ≈ A0

A



Gaussian curvature as local area distortion

area A area A0

I principal contact element net (p, n)
I Gauss image n
I discrete Gauss curvature of a face:

K =
A0

A



Local Steiner formula

Smooth surface f , offset surface ft at distance t:

dA(ft) = (1 − 2Ht + Kt2)dA(f ).

I ratio of area elements is a quadratic polynomial in the
offset distance

I coefficients depend on Gaussian curvature K and mean
curvature H

Discretization:
I compare face areas of offset nets
I use coefficients of (hopefully) quadratic polynomials



Oriented and mixed area

I n-gon P = 〈p0, . . . , pn−1〉 ⊂ R2

I oriented area

A(P) =
1
2

n∑
i=0

det(pi, pi+1) (indices modulo n)

= (p0, . . . , pn) ·A · (p0, . . . , pn)
T (quadratic form in R2n)

I associated symmetric bilinear form mixed-area-form.mw

A(P,Q) = (p0, . . . , pn) ·A · (q0, . . . , qn)
T

Remark
If P and Q are parallel, positively oriented convex polygons
then A(P, Q) equals the mixed area (known from convex
geometry) of P and Q.



Discrete Steiner formula

I principal contact element net (f , n)
I offset net ft = f + tn
I corresponding faces F, Ft, N

A(Ft) = A(F + tN) =

A(F) + 2tA(F, N) + t2A(N) = (1 − 2tH + t2K)A(F),

where

H = −
A(F, S)
A(F)

, K =
A(S)
A(F)

(discrete Gaussian and mean curvature associated to faces)



Pseudospherical principal contact element nets

Theorem
(f0, n0), (f1, n1), (f2, n2) of an elementary quadrilateral in a principal
contact element net, show that there exists precisely one vertex
(f3, n3) such that the Gaussian curvature attains a given value K.

I f3 is constrained to circle, n3 is found by reflection 
quadratic parametrizations f3(t) and n3(t)

I The condition K ·A(F) = A(S) is a quadratic polynomial
Q(t).

I One of the two zeros of Q is attained for f3 = f0, n3 = n0,
the other zero is the sought solution.



Pseudospherical principal contact element nets

Theorem
(f0, n0), (f1, n1), (f2, n2) of an elementary quadrilateral in a principal
contact element net, show that there exists precisely one vertex
(f3, n3) such that the Gaussian curvature attains a given value K.

Corollary
A pseudospherical principal contact element net (f , n) is governed by
a 2D system.

I Kinematic approach, nD consistency etc.
 ICGG 2010, CCGG 2010



Pseudospherical principal contact element nets
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