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Lecture 5:
Parallel Nets, Offset Nets and Curvature



Parallel nets

Definition

Let f: Z% — R" be a conjugate net. A conjugate net f*: Z7R"
is called a parallel net (or a Combescure transform of f) if
corresponding edges are parallel.

Remark

The theory of parallel nets
and offset nets as presented
below extends to quad
meshes of arbitrary
combinatorics.




Parallel nets and line congruences

Given are a conjugate net f and a parallel net f:

— {=fVfT is a discrete line congruence

Given are a conjugate net f and a discrete line congruence {

with f € £

= There exists a one-parameter family f* of parallel nets
with f* € L.

= f1 is uniquely determined by its value at one point.



Offset nets

Given:

> conjugate net f

» parallel net f*

Definition
A parallel net f* is called a vertex/face/edge offset net if
corresponding vertices/faces/edges are at constant distance d.



The vector space of parallel nets

Theorem

All conjugate nets parallel to a given conjugate net form a vector
space over R where addition and multiplication are defined
vertex-wise:

A ZE R, i M),
FAfrz8 SR, Qe ) ().

Definition
Let f and f* be a pair of offset nets at constant distance d.
Then the Gauss image of f* with respect to f is defined as



The smooth Gauss map for curves

» curvature = ratio of arc-lengths
of Gauss image and curve



The smooth Gauss map for surfaces

Definition
Given a smooth surface M, denote by 7, the oriented unit
normal in p € M. The Gauss map of M is the map

n:M— S peon,.




The smooth Gauss map for surfaces

Definition
Given a smooth surface M, denote by 7, the oriented unit
normal in p € M. The Gauss map of M is the map

n:M— S peon,.

Properties:
» closely related to surface curvatures
» negative derivative —dn: T,(M) — Tnp(Sz) is called the

shape operator



The Gauss image of offset nets

Theorem
The Gauss image of a vertex/face/edge offset net is a net

» whose vertices are contained in S,
» whose faces circumscribe st
» whose edges are tangent to S°.



Characterization of offset-nets

Corollary
A conjugate net f admits a vertex offset net f+ if and only if it is
circular.
Proof. Assume a vertex offset f* exists = circular Gauss
image = original net is circular (angle criterion for circu-
larity).
Construction of vertex offset nets:
Assume f is circular:

1. Prescribe one vertex of f

2. Construct Gauss image from one vertex and known edge
directions (unambiguous; no contradictions by
circularity).

3. Construct f* from the Gauss image (unambiguous; no
contradictions). O



Characterization of offset-nets

Corollary
A conjugate net f admits a face offset net f* if and only if it is
conical.
Proof. Assume a face offset f* exists = conical Gauss im-
age — original net is conical (angle criterion for conicality).
Construction of face offset nets:
Assume f is conical:

1. Prescribe one face of f+.

2. Construct other faces by offsetting (unambiguous; no
contradictions by conicality). O



Characterization of offset-nets

Definition
A conjugate net is called a Koebe net, if its edges are tangent
to the unit sphere.

Corollary

A conjugate net f admits an edge offset net f* if and only if it is
parallel to a Koebe net s.

Proof. Construction of f* from f and s:

ft=f+d-s



Offset nets in architecture

fewer edges for quad dominant meshes
quadrilateral glass panels are cheaper

>
>
> less-steel, more glass
» torsion-free nodes

>

existence of face or edge offset meshes

[ H. Pottmann, Y. Liu, J. Wallner, A. Bobenko, W. Wang
Geometry of multi-layer freeform structures for
architecture
ACM Trans. Graphics, vol. 26, no. 3, 1-1, 2007



Discrete line congruences with offset properties

Definition

Two discrete line congruences { and {* are called parallel, if
corresponding lines are parallel.

They are called offset congruences if corresponding lines are
at constant distance as well.

Remark
The edges of an edge-offset net constitute a special example of
an offset congruence with planar elementary quadrilaterals.

Remark
Offset congruences occur in architecture of folded paper
strips.



Application: Design of closed folded strips

http://www.archiwaste.org/?p=1109

Institut fiir Konstruktion und Gestaltung, Universitat Innsbruck:
Rupert Maleczek, Eda Schaur

Archiwaste:
Guillaume Bounoure, Chloe Geneveaux


http://www.archiwaste.org/?p=1109

Offset congruences

Theorem

All line congruences parallel to a given discrete line congruence {
form a vector space. Addition and multiplication are defined via
addition and multiplication of corresponding intersection points.

Definition
The Gauss image of two offset congruences £ and (" at
distance d is defined as

Theorem

A discrete line congruence { admits an offset congruence if and only
if it is parallel and at constant distance to a discrete line congruence
whose lines are tangent to the unit sphere S.



Elementary quadrilaterals of the Gauss image

Problem: Given two tangents A, B of S? find lines X which
1. intersect A and B and
2. are tangent to S2.

Solution: The locus of possible points of tangency consists of
two circles through a and b.



Bi-arcs in the plane and on the sphere

¥ H. Pottmann, J. Wallner
Computational Line Geometry
Springer (2001)

[ H. Stachel, W. Fuhs
Circular pipe-connections
Computers & Graphics 12 (1988), 53-57.



Elementary quadrilaterals of the Gauss image

Theorem
Let s be the Gauss image of a pair of offset congruences. An
elementary quadrilateral of s is either

1. the elementary quadrilateral of an HR-congruence or

2. something different (yet unnamed)

Remark
The geometry of offset congruences and metric aspects of
discrete line geometry are open research questions.



Curvature of a smooth curve

viICR =R, t—y(b),
_ (@ <y

W ="50r

Iy) = L 18] dt.

» change of tangent direction per arc-length

» inverse radius of optimally approximating circle



Steiner’s formula

» convex curve y C R?,
arc-length s, curvature »(s)

» offset curve y; at distance ¢

Ive) = I(y) +tj (t) dt
Y

Example: A circle

I(y) =2(r+ )t =2rm+ 2t = 1(y) + tJ rde
0



Steiner type curvatures in vertices

P1 ) P1 () ¢1 P2
Po P31 (Po @3] (¥o ¥3
K5 P4 @5 P4 @5 P4
2 sin % @i 2 tan %’

» Assign curvature to vertices so that Steiner’s Theorem
remains true.

» The three possibilities are identical up to second order
terms:

2sin € = @ +0(¢%), ¢ = 9+0(9?), 2tan £ = @ +O(p®).



Curvatures of a smooth surface

» normal-curvature.3dm



Gaussian curvature as local area distortion

area A area Ay



Gaussian curvature as local area distortion

area A area Ap

» principal contact element net (p, n)
» Gauss image n

» discrete Gauss curvature of a face:
_ Ao

K
A



Local Steiner formula

Smooth surface f, offset surface f; at distance t:

dA(fi) = (1 —2Ht + K#*) dA(f).

> ratio of area elements is a quadratic polynomial in the
offset distance

» coefficients depend on Gaussian curvature K and mean
curvature H

Discretization:
» compare face areas of offset nets

» use coefficients of (hopefully) quadratic polynomials



Oriented and mixed area

> n-gon P= <P0,...,pn_1> C R?

» oriented area

1 ¢ L
A(P) = 5 g det(p;, pi+1) (indices modulo n)
= (po,.--,pn) -A-(po,... ,pn)T (quadratic form in RZ”)
» associated symmetric bilinear form

A(T/Q) = (pOI---/Pn) A (QOI---/%)T

Remark
If P and Q are parallel, positively oriented convex polygons

then A(P, Q) equals the mixed area (known from convex
geometry) of P and Q.



Discrete Steiner formula

» principal contact element net (f, )
» offset net fy = f +tn

» corresponding faces F, F;, N

A(F;) = A(F+1tN) =
A(F) 4+ 2tA(F,N) + f*A(N) = (1 —2tH + ?K)A(F),

where
A(F,S) B @

A(F) ' — A(F)

(discrete Gaussian and mean curvature associated to faces)




Pseudospherical principal contact element nets

Theorem

(fo,mo), (f1,m1), (f2,n2) of an elementary quadrilateral in a principal
contact element net, show that there exists precisely one vertex

(fa, n3) such that the Gaussian curvature attains a given value K.

> f3 is constrained to circle, n3 is found by reflection ~»
quadratic parametrizations f3(¢) and n3(t)

» The condition K- A(F) = A(S) is a quadratic polynomial
Q(#).

» One of the two zeros of Q is attained for f3 = fy, n3 = ny,
the other zero is the sought solution.



Pseudospherical principal contact element nets

Theorem

(fo,mo), (f1,m1), (f2,n2) of an elementary quadrilateral in a principal
contact element net, show that there exists precisely one vertex

(fa, n3) such that the Gaussian curvature attains a given value K.

Corollary
A pseudospherical principal contact element net (f,n) is governed by
a 2D system.

» Kinematic approach, nD consistency etc.
~ ICGG 2010, CCGG 2010



Pseudospherical principal contact element nets
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