Difference Geometry

Hans-Peter Schröcker

Unit Geometry and CAD
University Innsbruck
July 22-23, 2010

Lecture 3:
 Discrete Surfaces and Line Congruences

Smooth parametrized surfaces

$$
\begin{gathered}
f: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \quad(u, v) \mapsto f(u, v) \\
f_{u} \times f_{v} \neq 0 \quad \text { where } f_{u}:=\frac{\partial f}{\partial u}, f_{v}:=\frac{\partial f}{\partial v} \\
\text { (tangent vectors to parameter lines) }
\end{gathered}
$$

Example

Discuss the regularity of the parametrized surface

$$
f(u, v)=\left(\begin{array}{c}
\cos u \cos v \\
\cos u \sin v \\
\sin u
\end{array}\right), \quad(u, v) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(0,2 \pi)
$$

Discrete surfaces

$$
\begin{gathered}
f: \mathbb{Z}^{d} \rightarrow \mathbb{R}^{n}, \quad\left(i_{1}, \ldots, i_{d}\right) \mapsto f\left(i_{1}, \ldots, i_{d}\right)=f_{i_{1}, \ldots, i_{d}} \\
\left(f_{i_{1}, \ldots, i_{j}+1, \ldots, i_{k} \ldots i_{d}}-f_{i_{1}, \ldots, i_{j}, \ldots, i_{k} \ldots, i_{d}}\right) \times\left(f_{i_{1}, \ldots, j_{j}, \ldots, i_{k}+\ldots, \ldots, i_{d}}-f_{i_{1}, \ldots, \ldots, \ldots, i_{k} \ldots, i_{d}}\right) \neq 0 \\
f: \mathbb{Z}^{2} \rightarrow \mathbb{R}^{3}, \quad(i, j) \mapsto f(i, j)=f_{i, j} \\
\left(f_{i+1, j}-f_{i j}\right) \times\left(f_{i, j+1}-f_{i j}\right) \neq 0
\end{gathered}
$$

Shift notation

- τ_{j} : shift in j-th coordinate direction, that is, $\tau_{j} f_{i_{1}, \ldots, i_{j}, \ldots, i_{d}}=f_{i_{1}, \ldots, i_{j}+1, \ldots, i_{d}}$
- write f, f_{1}, f_{2}, f_{12} etc. instead of $f_{i j}, \tau_{1} f_{i j}, \tau_{2} f_{i j}, \tau_{1} \tau_{2} f_{i j}$ etc., for example $\left(f_{i}-f\right) \times\left(f_{j}-f\right) \neq 0$

Surface curves

$$
\begin{gathered}
\gamma(t)=f(u(t), v(t)) \\
\dot{\gamma}(t)=\frac{\mathrm{d} \gamma}{\mathrm{~d} t}=\frac{\partial f}{\partial u} \frac{\mathrm{~d} u}{\mathrm{~d} t}+\frac{\partial f}{\partial v} \frac{\mathrm{~d} v}{\mathrm{~d} t}
\end{gathered}
$$

- tangents of all surface curve through a fixed surface point f lie in the plane through f and parallel to $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$
- tangent plane T is parallel to $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$
- surface normal N is parallel to $n=\frac{\partial f}{\partial u} \times \frac{\partial f}{\partial v}$

Conjugate parametrization

Definition

A surface parametrization $f(u, v)$ is called a conjugate parametrization if
$f_{u}=\frac{\partial f}{\partial u}, f_{v}=\frac{\partial f}{\partial v}$, and $f_{u v}=\frac{\partial^{2} f}{\partial u \partial v}$

are linearly dependent for
every pair (u, v).

- *invariant under projective transformations
- *tangents of parameter lines of one kind along one parameter line of the other kind form a torse
- conjugate directions belong to light ray and corresponding shadow boundary
- conjugate directions with respect to Dupin indicatrix

Examples

Example

Show that the surface parametrization

$$
f(u, v)=\frac{1}{\cos u+\cos v-2}\left(\begin{array}{c}
\sin u-\sin v \\
\sin u+\sin v \\
\cos v-\cos u
\end{array}\right)
$$

is a conjugate parametrization.

Solution

```
with(LinearAlgebra):
F := 1/(cos(u)+\operatorname{cos}(v)-2) *
    Vector([sin(u)-sin(v), sin(u)+sin(v), cos(v)-cos(u)]):
Fu := map(diff, F, u): Fv := map(diff, F, v):
Fuv := map(diff, Fu, v):
Rank(Matrix([Fu, Fv, Fuv]));
```


Examples

Example

Assume that the rational bi-quadratic tensor-product Bézier-surface

$$
f(u, v)=f(u, v)=\frac{\sum_{i=0}^{2} \sum_{j=0}^{2} w_{i j} p_{i j} B_{i}^{2}(u) B_{j}^{2}(v)}{\sum_{i=0}^{2} \sum_{j=0}^{2} w_{i j} B_{i}^{2}(u) B_{j}^{2}(v)}
$$

defines a conjugate parametrization. Show that in this case the four sets of control points

$$
\begin{array}{ll}
\left\{p_{00}, p_{01}, p_{11}, p_{10}\right\}, & \left\{p_{01}, p_{02}, p_{12}, p_{11}\right\} \\
\left\{p_{10}, p_{11}, p_{21}, p_{20}\right\}, & \left\{p_{11}, p_{12}, p_{22}, p_{21}\right\}
\end{array}
$$

are necessarily co-planar.

Examples

Solution

- $w_{00} f_{u}(0,0)=2 w_{10}\left(p_{10}-p_{00}\right)$,

$$
w_{00} f_{v}(0,0)=2 w_{01}\left(p_{01}-p_{00}\right)
$$

- $4 w_{00}^{2} f_{u v}(0,0)=$
$w_{00} w_{11}\left(p_{11}-p_{00}\right)-w_{01} w_{10}\left(\left(p_{01}-p_{00}\right)+\left(p_{10}-p_{00}\right)\right)$

Discrete conjugate nets

Definition

A discrete surface $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}^{n}$ is called a discrete conjugate surface (or a conjugate net), if every elementary quadrilateral is planar, that is, if the three vectors

$$
f_{i}-f, \quad f_{j}-f, \quad f_{i j}-f
$$

are linearly dependent for
 $1 \leqslant i<j \leqslant d$.

- *invariant under projective transformations
- *edges in one net direction along thread in other net direction form a discrete torse

Analytic description of conjugate nets

$$
f_{i j}=f+c_{j i}\left(f_{i}-f\right)+c_{i j}\left(f_{j}-f\right), \quad c_{j i}, c_{i j} \in \mathbb{R}
$$

Construction of a conjugate net f from

1. values of f on the coordinate axes of \mathbb{Z}^{d} and
2. $d(d-1)$ scalar functions $c_{j i}, c_{i j}: \mathbb{Z}^{d} \rightarrow \mathbb{R}$

Example

For which values of $c_{j i}$ and $c_{i j}$ is the quadrilateral $f f_{1} f_{12} f_{2}$

1. convex,
2. embedded?

Solution

By an affine transformation, the situation is equivalent to

$$
f=(0,0), \quad f_{i}=(1,0), \quad f_{j}=(0,1) .
$$

Then the fourth vertex is $f_{i j}=\left(c_{j i}, c_{i j}\right)$. The quadrilateral is

- convex if $c_{i j}, c_{i j} \geqslant 0$ and

$$
c_{j i}+c_{i j} \geqslant 1
$$

- embedded if
- $c_{j i}+c_{i j}>1$ or
- $c_{j i}, c_{i j}>0$ or
- $c_{j i}=0, c_{i j} \geqslant 1$ or
- $c_{i j}=0, c_{j i} \geqslant 1$ or
- $c_{j i}, c_{i j}<0$.

convex embedded

The basic 3D system

Theorem

Given seven vertices $f, f_{1}, f_{2}, f_{3}, f_{12}, f_{13}$, and f_{23} such that each quadruple $f f_{i} f_{j} f_{i j}$ is planar there exists a unique point $f_{i j k}$ such that each quadruple $f_{i} f_{i j} f_{i k} f_{i j k}$ is planar.

Proof.

- The initially given vertices lie in a three-space.
- The point f_{123} is obtained as intersection of three planes in this three-space.

3D consistency of a 2D system

4D consistency of a 3D system

4D consistency of conjugate nets

Theorem
The 3D system governing discrete conjugate nets is $4 D$ consistent.
Proof.
More-dimensional geometry.
Corollary
The 3D system governing discrete conjugate nets is $n D$ consistent.
Proof.
General result of combinatorial nature on 4D consistent 3D systems.

Quadric restriction of conjugate nets

Theorem

Given seven vertices $f, f_{1}, f_{2}, f_{3}, f_{12}, f_{13}$, and f_{23} on a quadric Q such that each quadruple $f f_{i} f_{j} f_{i j}$ is planar, there exists a unique point $f_{i j k} \in Q$ such that each quadruple $f_{i} f_{i j} f_{i k} f_{i j k}$ is planar.

circular-net

Lemma

Given seven generic points $f, f_{1}, f_{2}, f_{3}, f_{12}, f_{13}, f_{23}$ in three space there exists an eighth point f_{123} such that any quadric through f, f_{1}, f_{2}, f_{3}, f_{12}, f_{13}, f_{23} also contains f_{123}.
Proof.

- Quadric equation: $[1, x] \cdot Q \cdot[1, x]=0$ with $Q \in \mathbb{R}^{4 \times 4}$, symmetric, unique up to constant factor
- Quadrics through $f, \ldots f_{23}: \lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}=0$ (solution system of seven linear homogeneous equations)
- $f_{123}=Q_{1} \cap Q_{2} \cap Q_{3} \backslash\left\{f_{1} \ldots f_{23}\right\}$

Quadric restriction of conjugate nets

Theorem
Given seven vertices $f, f_{1}, f_{2}, f_{3}, f_{12}, f_{13}$, and f_{23} on a quadric Q such that each quadruple $f f_{i} f_{j} f_{i j}$ is planar, there exists a unique point $f_{i j k} \in Q$ such that each quadruple $f_{i} f_{i j} f_{i k} f_{i j k}$ is planar.

Proof.

- The 3D systems determines $f_{i j k}$ uniquely.
- The pair of planes $f \vee f_{i} \vee f_{j} \vee f_{i j}$ and $f_{k} \vee f_{i k} \vee f_{j k}$ is a (degenerate) quadric through the initially given points.
- Three quadrics of this type intersect in $f_{i j k}$.

The meaning of quadric restriction

Conjugate nets in quadric models of geometries:

- line geometry (Plücker quadric)
- geometry of SE(3) (Study quadric)
- geometry of oriented spheres (Lie quadric)

Conjugate nets in intersection of quadrics:

- geometry of SE(3) (intersection of six quadrics in \mathbb{R}^{12})

Specializations of conjugate nets:

- circular nets
- . .

The meaning of 3D consistency

Literature

Q R. Sauer
Differenzengeometrie
Springer (1970)
A. I. Bobenko, Yu. B. Suris

Discrete Differential Geometrie. Integrable Structure American Mathematical Society (2008)

Numeric computation of conjugate nets

Contradicting aims

- planarity
- fairness
- closeness to given surface

Planarity criteria

- $\alpha+\beta+\gamma+\delta-2 \pi=0$
(planar and convex)
- distance of diagonals
- $\operatorname{det}\left(a, a_{j}, b\right)=\cdots=0$, (planar, avoid singularities)
- minimize a linear combination of
- fairness functional and
- closeness functional subject to planarity constraints

Literature

围 Liu Y., Pottmann H., Wallner J., Yang Y.-L., Wang W. Geometric Modeling with Conical and Developable Surfaces ACM Transactions on Graphics, vol. 25, no. 3, 681-689.

围 Zadravec M., Schiftner A., Wallner J.
Designing quad-dominant meshes with planar faces. Computer Graphics Forum 29/5 (2010), Proc. Symp. Geometry Processing, to appear.

Asymptotic parametrization

Definition

A surface parametrization $f(u, v)$ is called an asymptotic parametrization if

$$
\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}, \frac{\partial^{2} f}{\partial u^{2}} \quad \text { and } \quad \frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}, \frac{\partial^{2} f}{\partial v^{2}}
$$

are linearly dependent for every pair (u, v).
Asymptotic lines

- exist only on surfaces with hyperbolic curvature
- *osculating plane of parameter lines is tangent to surface (rectifying plane contains surface normal)
- intersection curve of surface and rectifying plane of parameter lines has an inflection point
- invariant under projective transformations

An Example

Example

Show that the surface parametrization

$$
f(u, v)=\left(\begin{array}{c}
u \\
v \\
u v
\end{array}\right)
$$

is an asymptotic parametrization.

Solution

We compute the partial derivative vectors:

$$
f_{u}=(1,0, v), \quad f_{v}=(0,1, u), \quad f_{u u}=f_{v v}=(0,0,0)
$$

Obviously, $f_{u u}$ and $f_{v v}$ are linearly dependent from f_{u} and f_{v}.

A pseudosphere

目 Wunderlich W.
Zur Differenzengeometrie der Flächen konstanter negativer Krümmung Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II, vol. 160, no. 2, 39-77, 1951.

Discrete asymptotic nets

Definition

A discrete surface $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}^{3}$ is called a discrete asymptotic surface (or an asymptotic net), if there exists a plane through f that contains all vectors

$$
f_{i}-f, \quad f_{-i}-f
$$

for $1 \leqslant i \leqslant d$ (planar "vertex stars").

- well-defined tangent plane T and surface normal N at every vertex f
- discrete partial derivative vector $\left(f_{i}-f\right)+\left(f-f_{-i}\right)$ is parallel to T

Examples

A sportive example
http://www.flickr.com/photos/laffy4k/202536862/
http://www.flickr.com/photos/bekahstargazing/436888403/
http://www.flickr.com/photos/nataliefranke/2785575144/
A floristic example
blumenampel-1.jpg blumenampel-2.jpg
An architectural example
http://www.flickr.com/photos/preef/4610086160/

Properties of asymptotic nets

- *invariant under projective transformations
- *asymptotic lines have osculating planes tangent to the surface

Asymptotic nets in higher dimension

- straightforward extension to maps $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}^{n}$
- nonetheless only asymptotic nets in a three-space

Construction of 2D asymptotic nets

- Prescribe values of f on coordinate axes such that all vectors

$$
\tau_{i} f_{0,0}-f_{0,0}, \quad i \in\{1,2\}
$$

are parallel to a plane.

- $f_{1,1}$ lies in the intersection of the two planes

$$
f_{0,0} \vee f_{1,0} \vee f_{2,0} \quad \text { and } \quad f_{0,0} \vee f_{0,1} \vee f_{0,2}
$$

(one degree of freedom)

- inductively construct remaining values of f (one degree of freedom per vertex)

Construction of asymptotic nets in dimension three

- Prescribe values of f on coordinate axes such that all vectors

$$
\tau_{i} f_{0,0,0}-f_{0,0,0}, \quad i \in\{1,2,3\}
$$

are parallel to a plane.

- Complete the points

$$
\tau_{i} \tau_{j} f_{0,0,0}, \quad i, j \in\{1,2,3\} ; i \neq j
$$

(one degree of freedom per vertex).

- three ways to construct $f_{1,1,1}$ from the already constructed values \Longrightarrow three straight lines

Do these lines intersect? Are asymptotic nets governed by a 3D system?

Möbius tetrahedra

Definition

Two tetrahedra $a_{0} a_{1} a_{2} a_{3}$ and $b_{0} b_{1} b_{2} b_{3}$ are called Möbius tetrahedra, if

$$
a_{i} \in b_{j} \vee b_{k} \vee b_{l} \quad \text { and } \quad b_{i} \in a_{j} \vee a_{k} \vee a_{l}
$$

for all pairwise different $i, j, k, l \in\{0,1,2,3\}$.
(Points of one tetrahedron lie in corresponding planes of the other tetrahedron.)

Theorem (Möbius)

Seven of the eight incidence relations (\star) imply the eighth.

Möbius tetrahedra

Proof.

1. Notation: $A_{i}=a_{j} \vee a_{k} \vee a_{l}$, $B_{i}=b_{j} \vee b_{k} \vee b_{l}$
2. Choose a_{0}, B_{0} with $a_{0} \in B_{0}$.
3. Choose a_{1}, a_{2}, a_{3} (general position $) \rightsquigarrow A_{0}, A_{1}, A_{2}, A_{3}$.
4. Choose $b_{1} \in B_{0} \cap A_{1}$, $b_{2} \in B_{0} \cap A_{2}, b_{3} \in B_{0} \cap A_{3} \rightsquigarrow$ $B_{1}=b_{2} \vee b_{3} \vee a_{1}$,
$B_{2}=b_{1} \vee b_{3} \vee a_{2}$,
$B_{3}=b_{1} \vee b_{2} \vee a_{3}$.

5. $b_{0}:=B_{1} \cap B_{2} \cap B_{3}$, Claim: $b_{0} \in A_{0}$ (\checkmark by Pappus' Theorem).

Construction of asymptotic nets in dimension three (II)

- Asymptotic net \sim pairs (f, T) of points f and planes T with $f \in T$; defining property

$$
f \in \tau_{i} T \quad \text { and } \quad \tau_{i} f \in T
$$

- Partition the vertices of the elementary hexahedron of an asymptotic net into two vertex sets of tetrahedra:

$$
\begin{aligned}
& a_{0}=f_{0,0,0}, a_{1}=f_{1,1,0}, a_{2}=f_{1,0,1}, a_{3}=f_{0,1,1} \\
& b_{0}=f_{1,1,1}, b_{1}=f_{0,0,1}, b_{2}=f_{0,1,0}, b_{3}=f_{1,0,0}
\end{aligned}
$$

- Construction of the vertices $f_{i j k}$ with $(i, j, k) \neq(1,1,1)$ yields the configuration of Möbius' Theorem
\Longrightarrow construction of f_{111} without contradiction.

Analytic description of asymptotic nets

Asymptotic net: $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}^{3}$
Lelieuvre vector field: $n: \mathbb{Z}^{d} \rightarrow \mathbb{R}^{3}$ such that

$$
\begin{aligned}
& \text { 1. } n \perp T \text { and } \\
& \text { 2. } f_{i}-f=n_{i} \times n
\end{aligned}
$$

- vector n_{i} can be constructed uniquely from f, n, f_{i} (three linear equations)
- vector $n_{i j}$ can be constructed via
- $f, n, f_{i} \rightsquigarrow n_{i} ; f_{i j} \rightsquigarrow n_{i j}$
- $f, n, f_{j} \rightsquigarrow n_{j} ; f_{i j} \rightsquigarrow n_{i j}$

Do these values coincide?

An auxiliary result

Lemma (Product formula)

Consider a skew quadrilateral $f, f_{i}, f_{i j}$, f_{j} and vectors $n, n_{i}, n_{i j}, n_{j}$ such that

$$
f_{i}-f=\alpha n_{i} \times n, \quad f_{j}-f=\beta n_{j} \times n,
$$

$$
f_{i j}-f_{j}=\alpha_{j} n_{j} \times n_{j}, \quad f_{i j}-f_{i}=\beta_{i} n_{i j} \times n_{i}
$$

Then $\alpha \alpha_{j}=\beta \beta_{i}$.

Proof.

- $\left(f_{i}-f\right)^{\mathrm{T}} \cdot n_{j}=\alpha\left(n_{i} \times n\right)^{\mathrm{T}} \cdot n_{j}=-\alpha\left(n_{j} \times n\right)^{\mathrm{T}} \cdot n_{i}$
- $\left(f_{j}-f\right)^{\mathrm{T}} \cdot n_{i}=\beta\left(n_{j} \times n\right)^{\mathrm{T}} \cdot n_{i}$
$--\frac{\alpha}{\beta}=\frac{\left(f_{i}-f\right)^{\mathrm{T}} \cdot n_{j}}{\left(f_{j}-f\right)^{\mathrm{T}} \cdot n_{i}}=\frac{\left(f_{i}-f+f-f_{j}\right)^{\mathrm{T}} \cdot n_{j}}{\left(f_{j}-f+f-f_{i}\right)^{\mathrm{T}} \cdot n_{i}}=\frac{\left(f_{i}-f_{j}\right)^{\mathrm{T}} \cdot n_{j}}{\left(f_{j}-f_{i}\right)^{\mathrm{T}} \cdot n_{i}}$

An auxiliary result

Lemma (Product formula)

Consider a skew quadrilateral $f, f_{i}, f_{i j}$, f_{j} and vectors $n, n_{i}, n_{i j}, n_{j}$ such that

$$
f_{i}-f=\alpha n_{i} \times n, \quad f_{j}-f=\beta n_{j} \times n,
$$

$$
f_{i j}-f_{j}=\alpha_{j} n_{j} \times n_{j}, \quad f_{i j}-f_{i}=\beta_{i} n_{i j} \times n_{i}
$$

Then $\alpha \alpha_{j}=\beta \beta_{i}$.

Proof.

$$
\begin{aligned}
& -\frac{\alpha}{\beta}=\frac{\left(f_{i}-f\right)^{\mathrm{T}} \cdot n_{j}}{\left(f_{j}-f\right)^{\mathrm{T}} \cdot n_{i}}=\frac{\left(f_{i}-f+f-f_{j}\right)^{\mathrm{T}} \cdot n_{j}}{\left(f_{j}-f+f-f_{i}\right)^{\mathrm{T}} \cdot n_{i}}=\frac{\left(f_{i}-f_{j}\right)^{\mathrm{T}} \cdot n_{j}}{\left(f_{j}-f_{i}\right)^{\mathrm{T}} \cdot n_{i}} \\
& >-\frac{\alpha_{j}}{\beta_{i}}=\cdots=\frac{\left(f_{i}-f_{j}\right)^{\mathrm{T}} \cdot n_{i}}{\left(f_{i}-f_{j}\right)^{\mathrm{T}} \cdot n_{j}} \\
& \Rightarrow \Longrightarrow \frac{\alpha}{\beta}=\frac{\beta_{i}}{\alpha_{j}}
\end{aligned}
$$

Existence and uniqueness

Theorem

The Lelieuvre normal vector field n of an asymptotic net f is uniquely determined by its value at one point.

Proof.
Uniqueness \checkmark

Existence

- Product formula for normal vector fields: $\alpha \alpha_{j}=\beta \beta_{i}$.
- Three of the values $\alpha, \alpha_{j}, \beta, \beta_{i}$ equal $1 \Longrightarrow$ all four values equal 1.
- The Lelieuvre normal vector field is characterized by $\alpha=\alpha_{j}=\beta=\beta_{i}=1$.
- Both construction of $n_{i j}$ result in the same value.

Relation between two Lelieuvre normal vector fields

Theorem
Suppose that n and n^{\prime} are two Lelieuvre normal vector fields to the same asymptotic net. Then there exists a value $\alpha \in \mathbb{R}$ such that

$$
n(z)= \begin{cases}\alpha n(z) & \text { if } z_{1}+\cdots+z_{d} \text { is even } \\ \alpha^{-1} n(z) & \text { if } z_{1}+\cdots+z_{d} \text { is odd } .\end{cases}
$$

Proof. \checkmark

The discrete surface of Lelieuvre normals

What are the properties of the discrete net $n: \mathbb{Z}^{d} \rightarrow \mathbb{R}^{3}$?

- $f_{i j}-f=f_{i j}-f_{i}+f_{i}-f=n_{i j} \times n_{i}+n_{i} \times n$
- $f_{i j}-f=f_{i j}-f_{j}+f_{j}-f=n_{i j} \times n_{j}+n_{j} \times n$
$\Rightarrow \Longrightarrow\left(n_{i j}-n\right) \times\left(n_{i}-n_{j}\right)=0$
- $\Longrightarrow n_{i j}-n=a_{i j}\left(n_{j}-n_{i}\right)$ where $a_{i j} \in \mathbb{R}$

Conclusion:

- The net $n: \mathbb{Z}^{d} \rightarrow \mathbb{R}^{3}$ is conjugate.
- Every fundamental quadrilateral has parallel diagonals (this is called a "T-net").

T-nets

Defining equation:

$$
y_{i j}-y=a_{i j}\left(y_{j}-y_{i}\right) \quad \text { where } \quad a_{i j} \in \mathbb{R}
$$

- $a_{i j}=-a_{j i}$
- $y_{i j}-y=\left(1+c_{j i}\right)\left(y_{i}-y\right)+\left(1+c_{i j}\right)\left(y_{j}-y\right) \Longrightarrow$
- $c_{i j}+c_{j i}+2=0$ (T-net condition)
- $a_{i j}=c_{i j}+1$ (relation between coefficients)

Elementary hexahedra of T-nets

Theorem

Consider seven points $y, y_{1}, y_{2}, y_{3}, y_{12}, y_{13}, y_{23}$ of a combinatorial cube such that the diagonals of

$$
y y_{1} y_{12} y_{2}, \quad y y_{1} y_{13} y_{3}, \quad \text { and } y y_{2} y_{23} y_{3}
$$

are parallel. Then there exists a unique point y_{123} such that also the diagonals of

$$
y_{1} y_{12} y_{123} y_{13}, \quad y_{2} y_{12} y_{123} y_{23}, \quad \text { and } y_{3} y_{13} y_{123} y_{23}
$$

are parallel.
Corollary
T-nets are described by a 3D system. They are $n D$ consistent.

Elementary hexahedra of T-nets

Proof.

- $y_{i j}-y=a_{i j}\left(y_{j}-y_{i}\right) \Longrightarrow$

$$
\tau_{i} y_{j k}=\left(1+\left(\tau_{i} a_{j k}\right)\left(a_{i j}+a_{k i}\right)\right) y_{i}-\left(\tau_{i} a_{j k}\right) a_{i j} y_{j}-\left(\tau_{i} a_{j k}\right) a_{k i} y_{k}
$$

- Six linear conditions for three unknowns $\tau_{i} a_{j k}$:

$$
\begin{aligned}
& 1+\left(\tau_{1} a_{23}\right)\left(a_{12}+a_{31}\right)=-\left(\tau_{2} a_{31}\right) a_{12}=-\left(\tau_{3} a_{12}\right) a_{31} \\
& 1+\left(\tau_{2} a_{31}\right)\left(a_{23}+a_{12}\right)=-\left(\tau_{3} a_{12}\right) a_{23}=-\left(\tau_{1} a_{23}\right) a_{12} \\
& 1+\left(\tau_{2} a_{30}\right)\left(a_{23}+a_{02}\right)=-\left(\tau_{3} a_{02}\right) a_{23}=-\left(\tau_{0} a_{23}\right) a_{02}
\end{aligned}
$$

- Unique solution:

$$
\frac{\tau_{1} a_{23}}{a_{23}}=\frac{\tau_{2} a_{31}}{a_{31}}=\frac{\tau_{3} a_{12}}{a_{12}}=\frac{1}{a_{12} a_{23}+a_{23} a_{31}+a_{31} a_{12}}
$$

Asymptotic nets from T-nets

Theorem
An asymptotic net is uniquely defined (up to translation) by a Lelieuvre normal vector field (a T-net).

Corollary

Asymptotic nets are $n D$ consistent.
Question: How to construct an asymptotic net from a given T-net n ?

Discrete one forms

- graph G with vertex set V, set of directed edges \vec{E}
- vector space W

Definition (discrete additive one-form)

- $p: \vec{E} \rightarrow W$ is a discrete additive one-form if $p(-e)=-p(e)$.
- p is exact if $\sum_{e \in Z} p(e)=0$ for every cycle Z of directed edges.

Example: $p(e)=e$.
Definition (discrete multiplicative one-form)

- $q: \vec{E} \rightarrow \mathbb{R} \backslash 0$ is a discrete multiplicative one-form if $q(-e)=1 / q(e)$.
- q is exact if $\prod_{e \in Z} q(e)=1$ for every cycle Z of directed edges.

Integration of exact forms

Theorem

Given the exact additive discrete one form $p: \vec{E} \rightarrow W$ there exists a function $f: V \rightarrow W$ such that $p(e)=f(y)-f(x)$ for any $e=(x, y)$ in \vec{E}. The function f is defined up to an additive constant.
Proof. \checkmark

Theorem

Given the exact multiplicative discrete one form $q: \vec{E} \rightarrow \mathbb{R} \backslash 0$ there exists a function $v: V \rightarrow \mathbb{R} \backslash 0$ such that $q(e)=v(y) / v(x)$ for any $e=(x, y)$ in \vec{E}. The function v is defined up to an additive constant.

Integration of exact forms

Theorem
Given the exact additive discrete one form $p: \vec{E} \rightarrow W$ there exists a function $f: V \rightarrow W$ such that $p(e)=f(y)-f(x)$ for any $e=(x, y)$ in \vec{E}. The function f is defined up to an additive constant. Proof. \checkmark

Question: How to construct an asymptotic net from a given T-net n ?

Answer: Integrate the exact one form $p(i, j)=n_{i} \times n_{j}$.

Ruled surfaces and torses

$\mathcal{L}^{n} \ldots$ set of lines in $\mathbb{R}^{(}{ }^{n}$ (typically $n=3$)
Definition
A ruled surface is a (sufficiently regular) map $\ell: \mathbb{R} \rightarrow \mathcal{L}^{n}$.
Definition
A discrete ruled surface is a map $\ell: \mathbb{Z} \rightarrow \mathcal{L}^{n}$ such that
$\ell \cap \ell_{i}=\varnothing$.

Definition

A torse is a map $\ell: \mathbb{R} \rightarrow \mathcal{L}^{n}$ such that all image lines are tangent to a (sufficiently regular) curve.

Definition

A discrete torse is a map $\ell: \mathbb{Z} \rightarrow \mathcal{L}^{n}$ such that $\ell \cap \ell_{i} \neq \varnothing$.
\Longrightarrow existence of polygon of regression, osculating planes etc.

Smooth line congruences

Definition

A line congruence is a (sufficiently regular) map $\ell: \mathbb{R}^{2} \rightarrow \mathcal{L}^{n}$.

Examples

- normal congruence of a smooth surface: $f(u, v)+\lambda n(u, v)$ where $n=f_{u} \times f_{v}$.
- set of transversals of two skew lines
- sets of light rays in geometrical optics

Discrete line congruences

Definition

A discrete line congruence is a map $\ell: \mathbb{Z}^{d} \rightarrow \mathcal{L}^{n}$ such that any two neighbouring lines ℓ and ℓ_{i} intersect.

- smooth line congruences admit special parametrizations \rightsquigarrow different discretizations conceivable
- discretize definition considers only parametrization "along torses"

Construction of discrete line congruences

$d=2: \checkmark$
$d=3$: The completion of an elementary hexahedron from seven lines $\ell, \ell_{1}, \ell_{2}, \ell_{3}, \ell_{12}, \ell_{13}, \ell_{23}$ is possible and unique (3D system).
$d=4$: The completion of an elementary hypercube from 15 lines $\ell, \ell_{i}, \ell_{i j}, \ell_{i j k}$ is possible and unique (4D consistent).
$d>4 n \mathrm{D}$ consistent

Discrete line congruences and conjugate nets

Definition

The i-th focal net of a discrete line congruence $\ell: \mathbb{Z}^{d} \rightarrow \mathcal{L}^{n}$ is defined as $F^{(i)}=\ell \cap \ell_{i}$.

Theorem

The i-th focal net of a discrete line congruence is a discrete conjugate net.

Theorem

Given a discrete conjugate net $f: \mathbb{Z}^{d} \rightarrow \mathbb{R}^{n}$, a discrete line congruence $\ell: \mathbb{Z}^{d} \rightarrow \mathcal{L}^{n}$ with the property $f \in \ell$ is uniquely determined by its values at the coordinate axes in \mathbb{Z}^{d}.

Proof.

Given two lines ℓ_{i}, ℓ_{j} and a point $f_{i j}$ there exists a unique line $\ell_{i j}$ incident with $f_{i j}$ and concurrent with ℓ_{i}, ℓ_{j}.

Discrete line congruences and conjugate nets II

Definition

The i-th tangent congruence of a discrete conjugate net $f: \mathbb{Z}^{2} \rightarrow \mathbb{R} \mathbb{P}^{n}$ is defined as $\ell^{(i)}=f \vee f_{i}$.

Definition

In case of $d=2$ the i-th Laplace transform $l^{(i)}$ of a two-dimensional discrete conjugate net is the j-th focal congruence of its i-th tangent congruence $(i \neq j)$.

Theorem
The Laplace transforms of a discrete conjugate net are discrete conjugate nets.

