Difference Geometry

Hans-Peter Schröcker

Unit Geometry and CAD
University Innsbruck
July 22-23, 2010

Lecture 2:
 Discrete Curves and Torses

Smooth and discrete curves

Smooth curve:

$$
\gamma: I \subset \mathbb{R} \rightarrow \mathbb{R}^{d}, \quad u \mapsto \gamma(u)
$$

Regularity condition:

$$
\frac{\mathrm{d} \gamma}{\mathrm{~d} u}(u)=\dot{\gamma}(u) \neq 0
$$

Discrete curve:
$\gamma: I \subset \mathbb{Z} \rightarrow \mathbb{R}^{d}, \quad i \mapsto \gamma(i)=: \gamma_{i}$,
Regularity condition:

$$
\delta \gamma_{i}:=\gamma_{i+1}-\gamma_{i} \neq 0
$$

Smooth and discrete curves

Smooth curve:

$$
\gamma: I \subset \mathbb{R} \rightarrow \mathbb{R}^{d}, \quad u \mapsto \gamma(u),
$$

Regularity condition:

$$
\frac{\mathrm{d} \gamma}{\mathrm{~d} u}(u)=\dot{\gamma}(u) \neq 0
$$

Discrete curve:
$\gamma: I \subset \mathbb{Z} \rightarrow \mathbb{R}^{d}, \quad i \mapsto \gamma(i)=: \gamma_{i}$,
Regularity condition:

$$
\delta \gamma_{i}:=\gamma_{i+1}-\gamma_{i} \neq 0
$$

Shift notation:

$$
\begin{gathered}
\gamma_{i} \approx \gamma, \quad \gamma_{i+1} \approx \gamma_{1}, \quad \gamma_{i-1} \approx \gamma_{-1} \\
\quad \text { for example } \delta \gamma=\gamma_{1}-\gamma
\end{gathered}
$$

Example

Discuss the regularity of

$$
\gamma(t)=\binom{t-\sin t}{1-\cos t}
$$

Solution

$$
\dot{\gamma}(t)=\binom{1-\cos t}{\sin t}=0 \Longleftrightarrow t=2 k \pi, k \in \mathbb{Z}
$$

Example

Derive a parametrization of the discrete cycloid and discuss its regularity.

Solution

$$
\begin{gathered}
\gamma_{k}=\sum_{l=0}^{k}\left(1-e^{-\mathrm{i} l \frac{2 \pi}{n}}\right)=\sum_{l=0}^{k}\left(\binom{1}{0}-\binom{\cos \frac{2 l \pi}{n}}{\sin \frac{2 l \pi}{n}}\right) \\
\gamma_{k}-\gamma_{k-1}=1-e^{-\mathrm{i} k \frac{2 \pi}{n}}=0 \Longleftrightarrow \frac{k}{n} \in \mathbb{Z}
\end{gathered}
$$

Tangent, principal normal, and bi-normal

tangent vector $t:=\delta \gamma /\|\delta \gamma\|$
normal vector

- $n \perp t$,
- $\|n\|=1$,
- n parallel to $\gamma_{-1} \vee \gamma \vee \gamma_{1}$,
- same orientation of $t_{-1} \times t$ and $t \times n$

Tangent, principal normal, and bi-normal

Definition
The Frenet-frame is the orthonormal frame with origin γ and axis vectors t, n, b.

Tangent, principal normal, and bi-normal

Osculating plane: incident with γ, orthogonal to b Normal plane: incident with γ, orthogonal to t Rectifying plane: incident with γ, orthogonal to n

Smooth and discrete curvature

Smooth curvature:

Infinitesimal change of tangent direction with respect to arc length:

$$
\varkappa(t)=\frac{\|\dot{\gamma}(t) \times \ddot{\gamma}(t)\|}{\|\dot{\gamma}(t)\|^{3}}
$$

Discrete curvature:

$$
\varkappa:=\frac{\sin \varphi}{s} \quad \text { where } \quad \varphi=\varangle\left(t_{-1}, t\right), s=\left\|\gamma_{1}-\gamma\right\|
$$

- Assume $\varphi \in\left[0, \frac{\pi}{2}\right]$ or $\varphi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (in case of $d=2$).
- We will later encounter different notions of curvature.

Smooth and discrete torsion

Smooth torsion: Change of bi-normal direction with respect to arc length (measure of "planarity"):

$$
\tau(t)=\frac{\langle\dot{\gamma}(t) \times \ddot{\gamma}(t), \dddot{\gamma}(t)\rangle}{\|\dot{\gamma}(t) \times \ddot{\gamma}(t)\|^{2}}
$$

Discrete torsion:

$$
\tau:=\frac{\sin \psi}{s} \quad \text { where } \quad \psi=\varangle\left(b, b_{1}\right)
$$

- assume $\psi \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- $\psi \geqslant 0 \Longleftrightarrow$ helical displacement of Frenet frame at γ_{-1} to Frenet frame at γ is a right screw
- $\tau \equiv 0 \Longleftrightarrow$ curve is planar

Infinite sequence of refinements

- Assume that all points γ are sampled from a smooth curve $\gamma(s)$, parametrized by arc-length.
- Consider an infinite sequence of refinements $\gamma_{i}=\gamma(\varepsilon i), \varepsilon \rightarrow 0$.

Curvature: $\varkappa \rightarrow \varkappa(s)$
Torsion: $\tau \rightarrow \tau(s)$
Frenet frame: $t \rightarrow t(s)=\frac{\dot{\gamma}(s)}{\|\dot{\gamma}(s)\|}, n \rightarrow n(s), b \rightarrow b(s)$

The fundamental theorems of curve theory

Theorem

Curvature $\varkappa(s)$ and torsion $\tau(s)$ as functions of the arc length determine a space curve up to rigid motion.

Proof.
Existence and uniqueness of an initial value problem for a system of partial differential equations.

Theorem
The three functions

- $\varkappa: \mathbb{Z} \rightarrow\left[0, \frac{\pi}{2}\right]$ (curvature),
- $\tau: \mathbb{Z} \rightarrow\left[-\frac{\pi}{2} \frac{\pi}{2}\right]$ (torsion), and
- $s: \mathbb{Z} \rightarrow \mathbb{R}^{+}$(arc-length)
uniquely determine a discrete space curve up to rigid motion.
Proof.
Elementary construction.

The fundamental theorems of curve theory

Theorem
Curvature $\varkappa(s)$ and torsion $\tau(s)$ as functions of the arc length determine a space curve up to rigid motion.

Proof.

Existence and uniqueness of an initial value problem for a system of partial differential equations.

Corollary
The two functions

- $\varkappa: \mathbb{Z} \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (curvature) and
- $s: \mathbb{Z} \rightarrow \mathbb{R}^{+}$(arc-length)
determine a discrete planar curve.

Discrete Frenet-Serret equations

$$
\begin{gathered}
t-t_{-1}=(1-\cos \varphi) t+\sin \varphi n \Longrightarrow \\
\frac{t-t_{-1}}{s}=\frac{1-\cos \varphi}{s} t+\varkappa n \\
\frac{1-\cos \varphi}{s}=\frac{\sin \varphi}{s} \cdot \tan \frac{\varphi}{2}=\varkappa \tan \frac{\varphi}{2} \rightarrow 0 \\
t^{\prime}(s):=\frac{\mathrm{d} t}{\mathrm{~d} s}(s)=\lim _{\varepsilon \rightarrow 0} \frac{t-t_{-1}}{s}=\lim _{\varepsilon \rightarrow 0} \varkappa n=\varkappa(s) n(s)
\end{gathered}
$$

Discrete Frenet-Serret equations

$$
\begin{gathered}
b_{1}-b=(\cos \psi-1) b-\sin \psi n \Longrightarrow \\
\frac{b_{1}-b}{s}=\frac{\cos \psi-1}{s}-\tau n
\end{gathered}
$$

$$
\begin{gathered}
\frac{\cos \psi-1}{s}=-\frac{\sin \psi}{s} \cdot \tan \frac{\psi}{2}=-\tau \cdot \tan \frac{\psi}{2} \rightarrow 0 \\
b^{\prime}(s):=\frac{\mathrm{d} b}{\mathrm{~d} s}(s)=\lim _{\varepsilon \rightarrow 0} \frac{b_{1}-b}{s}=\lim _{\varepsilon \rightarrow 0}-\tau n=-\tau(s) n(s) .
\end{gathered}
$$

Smooth Frenet-Serret equations

$$
\begin{aligned}
t^{\prime}(s)=\varkappa(s) n(s), \quad b^{\prime}(s)=-\tau(s) n(s) \Longrightarrow \\
\begin{aligned}
n^{\prime}(s):=\frac{\mathrm{d} n}{\mathrm{~d} s}(s) & =-\frac{\mathrm{d}(t \times b)}{\mathrm{d} s}(s) \\
& =-t^{\prime}(s) \times b(s)-t(s) \times b^{\prime}(s) \\
& =-\varkappa(s) n(s) \times b(s)+t(s) \times \tau(s) n(s) \\
& =-\varkappa(s) t(s)+\tau(s) b(s) . \\
\left(\begin{array}{c}
t^{\prime} \\
n^{\prime} \\
b^{\prime}
\end{array}\right) & =\left(\begin{array}{ccc}
0 & \varkappa & 0 \\
-\varkappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right) \cdot\left(\begin{array}{l}
t \\
n \\
b
\end{array}\right)
\end{aligned}
\end{aligned}
$$

Discrete torses

Definition

A discrete torse is a map T from \mathbb{Z} to the space of planes in \mathbb{R}^{3}.
, discrete-screw-torse.3dm

rulings: $\ell=T_{-1} \cap T$
edge of regression: $\gamma=T_{-1} \cap T \cap T_{1}$

- ℓ is an edge of γ
- ℓ and ℓ_{1} intersect
- T is osculating plane of γ
\rightsquigarrow equivalent definitions based on planes, points, and lines

Application: Design of closed folded strips

Application: Design of closed folded strips

http://www.archiwaste.org/?p=1109
Institut für Konstruktion und Gestaltung, Universität Innsbruck:
Rupert Maleczek, Eda Schaur
Archiwaste:
Guillaume Bounoure, Chloe Geneveaux

Literature

R. Sauer's book contains

- the derivation of the Frenet-Serret equations as presented here and
- a treatise on discrete torses.

Q R. Sauer
Differenzengeometrie Springer (1970)

