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Lecture 1:
Introduction



Three disciplines

Differential geometry

I infinitesimally neighboring objects
I calculus, applied to geometry

Difference geometry

I finitely separated objects
I elementary geometry instead of calculus

Discrete differential geometry

I “modern” difference geometry
I emphasis on similarity and analogy to

differential geometry





History

1920–1970 H. Graf, R. Sauer, W. Wunderlich:
I didactic motivation
I emphasis on flexibility questions

since 1995 U. Pinkall, A. I. Bobenko and many others:
I deep theory (arguably richer

than the smooth case)
I development of organizing principles

(Bobenko and Suris, 2008)
I connections to integrable systems
I applications in physics, computer graphics,

architecture, . . .



Motivation for a discrete theory

Didactic reasons: I easily accessible and concrete
I requires little a priori knowledge

(advanced calculus vs. elementary
geometry)

Rich theory: I at least as rich as smooth theory
I clear explanations for “mysterious”

phenomena in the smooth setting

Applications: I high potential for applications due to
discretizations

I numerous open research questions



Overview

Lecture 1: Introduction

Lecture 2: Discrete curves and torses

Lecture 3: Discrete surfaces and line congruences

Lecture 4: Discrete curvature lines

Lecture 5: Parallel nets, offset nets and curvature

Lecture 6: Cyclidic net parametrization



Literature

A. I. Bobenko, Yu. B. Suris
Discrete Differential Geometry. Integrable Structure
American Mathematical Society (2008)

R. Sauer
Differenzengeometrie
Springer (1970)

Further references to literature will be given during the
lecture and posted on the web-page

http://geometrie.uibk.ac.at/schroecker/difference-geometry/

http://geometrie.uibk.ac.at/schroecker/difference-geometry/


Software

Adobe Reader Recent versions that can handle 3D-data.
http://get.adobe.com/jp/reader

Rhinoceros 3D-CAD; evaluation version (fully functional,
save limit) is available at http://rhino3d.com.

Geogebra Dynamic 2D geometry, open source. Download
at http://geogebra.org.

Cabri 3D Dynamic 3D geometry. Evaluation version
(restricted mode after 30 days) available at
http://cabri.com/cabri-3d.html.

Maple Symbolic and numeric calculations.
Worksheets will be made available in
alternative formats. http://maplesoft.com

Asymptote Graphics programming language used for
most pictures in this lecture.
http://asymptote.sourceforge.net

http://get.adobe.com/jp/reader
http://rhino3d.com
http://geogebra.org
http://cabri.com/cabri-3d.html
http://maplesoft.com
http://asymptote.sourceforge.net


Conventions for this lecture

I If not explicitly stated otherwise, we assume generic
position of all geometric entities.

I Concepts from differential geometry are used as
motivation. Results are usually given without proof.

I Concepts from elementary geometry are usually
visualized and named. You can easily find the proofs on
the internet.

I Concepts from other fields (projective geometry, CAGD
etc.) will be explained in more detail upon request.

I Questions are highly appreciated.



An example from planar kinematics

One-parameter motion

α : I ⊂ R→ SE(2), t 7→ α(t) = αt

where
αt : Σ→ Σ ′, x 7→ αt(x) = x(t)

and

αt(x) =

(
cosϕ(t) − sinϕ(t)
sinϕ(t) cosϕ(t)

)
·

(
x1

x2

)
+

(
a1(t)
a2(t)

)



The cycloid (circle rolls on line)

x

y

ϕ(t) = −t, a1(t) = t, a2(t) = 0

αt(x) =

(
cos(−t) − sin(−t)
sin(−t) cos(−t)

)
·

(
x1

x2

)
+

(
t
0

)
cycloid.pdf



Corresponding result from three positions theory

Theorem (Inflection circle)
The locus of points x such that the trajectory x(t) = αt(x) has an
inflection point at t = t0 is a circle.

inflection-circle.mw

Theorem
Given are three positions Σ0, Σ1, and Σ2 of a moving frame Σ in the
Euclidean plane R2. Generically, the locus of points x ∈ Σ such that
the three corresponding points x0 ∈ Σ0, x1 ∈ Σ1, x2 ∈ Σ2 are
collinear is a circle.



Corresponding result from three positions theory

ω1ω1

ω2ω2

ω0ω0 c0c0 c1c1

c2c2

c ′2c
′
2

c ′0c
′
0

c ′1c
′
1

xx

x0x0

x1x1

x2x2

y0y0

y1y1

y2y2

The line y1 ∨ y2 ∨ y3 is the Simpson line to x.
discrete-inflection-circle.3dm discrete-inflection-circle.ggb



Comparison

Smooth theorem

I Formulation requires knowledge (planar kinematics,
inflection point, . . . )

I Proof requires calculus and algebra (differentiation,
circle equation)

Discrete theorem

I elementary formulation and proof
I smooth theorem by limit argument



The cycloid evolute

Theorem
The locus of curvature centers of the cycloid (its evolute) is a
congruent cycloid

cycloid.3dm



The discrete cycloid evolute

Theorem (see Hoffmann 2009)

n even: The locus of circle centers through three consecutive points
of a discrete cycloid (its vertex evolute) is a congruent
discrete cycloid.

n odd: The locus of circle centers tangent to three consecutive
edges of a discrete cycloid (its edge evolute) is a congruent
discrete cycloid.



Literature

Inflection circle: Chapter 8, § 9 of Bottema and Roth (1990).

Discrete cycloid: Hoffmann (2009)

Simpson line: Bottema (2008).

O. Bottema
Topics in Elementary Geometry
Springer (2008)

O. Bottema, B. Roth
Theoretical Kinematics
Dover Publications (1990)

T. Hoffmann
Discrete Differential Geometry of Curves and Surfaces
Faculty of Mathematics, Kyushu University (2009)
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