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Lecture 1:
Introduction



Three disciplines

Differential geometry

I infinitesimally neighboring objects
I calculus, applied to geometry

Difference geometry

I finitely separated objects
I elementary geometry instead of calculus

Discrete differential geometry

I “modern” difference geometry
I emphasis on similarity and analogy to

differential geometry





History

1920–1970 H. Graf, R. Sauer, W. Wunderlich:
I didactic motivation
I emphasis on flexibility questions

since 1995 U. Pinkall, A. I. Bobenko and many others:
I deep theory (arguably richer

than the smooth case)
I development of organizing principles

(Bobenko and Suris, 2008)
I connections to integrable systems
I applications in physics, computer graphics,

architecture, . . .



Motivation for a discrete theory

Didactic reasons: I easily accessible and concrete
I requires little a priori knowledge

(advanced calculus vs. elementary
geometry)

Rich theory: I at least as rich as smooth theory
I clear explanations for “mysterious”

phenomena in the smooth setting

Applications: I high potential for applications due to
discretizations

I numerous open research questions



Overview

Lecture 1: Introduction

Lecture 2: Discrete curves and torses

Lecture 3: Discrete surfaces and line congruences

Lecture 4: Discrete curvature lines

Lecture 5: Parallel nets, offset nets and curvature

Lecture 6: Cyclidic net parametrization



Literature

A. I. Bobenko, Yu. B. Suris
Discrete Differential Geometry. Integrable Structure
American Mathematical Society (2008)

R. Sauer
Differenzengeometrie
Springer (1970)

Further references to literature will be given during the
lecture and posted on the web-page

http://geometrie.uibk.ac.at/schroecker/difference-geometry/

http://geometrie.uibk.ac.at/schroecker/difference-geometry/


Software

Adobe Reader Recent versions that can handle 3D-data.
http://get.adobe.com/jp/reader

Rhinoceros 3D-CAD; evaluation version (fully functional,
save limit) is available at http://rhino3d.com.

Geogebra Dynamic 2D geometry, open source. Download
at http://geogebra.org.

Cabri 3D Dynamic 3D geometry. Evaluation version
(restricted mode after 30 days) available at
http://cabri.com/cabri-3d.html.

Maple Symbolic and numeric calculations.
Worksheets will be made available in
alternative formats. http://maplesoft.com

Asymptote Graphics programming language used for
most pictures in this lecture.
http://asymptote.sourceforge.net

http://get.adobe.com/jp/reader
http://rhino3d.com
http://geogebra.org
http://cabri.com/cabri-3d.html
http://maplesoft.com
http://asymptote.sourceforge.net


Conventions for this lecture

I If not explicitly stated otherwise, we assume generic
position of all geometric entities.

I Concepts from differential geometry are used as
motivation. Results are usually given without proof.

I Concepts from elementary geometry are usually
visualized and named. You can easily find the proofs on
the internet.

I Concepts from other fields (projective geometry, CAGD
etc.) will be explained in more detail upon request.

I Questions are highly appreciated.



An example from planar kinematics

One-parameter motion

α : I ⊂ R→ SE(2), t 7→ α(t) = αt

where
αt : Σ→ Σ ′, x 7→ αt(x) = x(t)

and

αt(x) =

(
cosϕ(t) − sinϕ(t)
sinϕ(t) cosϕ(t)

)
·
(

x1

x2

)
+

(
a1(t)
a2(t)

)



The cycloid (circle rolls on line)

x

y

ϕ(t) = −t, a1(t) = t, a2(t) = 0

αt(x) =

(
cos(−t) − sin(−t)
sin(−t) cos(−t)

)
·
(

x1

x2

)
+

(
t
0

)
cycloid.pdf



Corresponding result from three positions theory

Theorem (Inflection circle)
The locus of points x such that the trajectory x(t) = αt(x) has an
inflection point at t = t0 is a circle.

inflection-circle.mw

Theorem
Given are three positions Σ0, Σ1, and Σ2 of a moving frame Σ in the
Euclidean plane R2. Generically, the locus of points x ∈ Σ such that
the three corresponding points x0 ∈ Σ0, x1 ∈ Σ1, x2 ∈ Σ2 are
collinear is a circle.



Corresponding result from three positions theory
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The line y1 ∨ y2 ∨ y3 is the Simpson line to x.
discrete-inflection-circle.3dm discrete-inflection-circle.ggb



Comparison

Smooth theorem

I Formulation requires knowledge (planar kinematics,
inflection point, . . . )

I Proof requires calculus and algebra (differentiation,
circle equation)

Discrete theorem

I elementary formulation and proof
I smooth theorem by limit argument



The cycloid evolute

Theorem
The locus of curvature centers of the cycloid (its evolute) is a
congruent cycloid

cycloid.3dm



The discrete cycloid evolute

Theorem (see Hoffmann 2009)

n even: The locus of circle centers through three consecutive points
of a discrete cycloid (its vertex evolute) is a congruent
discrete cycloid.

n odd: The locus of circle centers tangent to three consecutive
edges of a discrete cycloid (its edge evolute) is a congruent
discrete cycloid.



Literature

Inflection circle: Chapter 8, § 9 of Bottema and Roth (1990).

Discrete cycloid: Hoffmann (2009)

Simpson line: Bottema (2008).

O. Bottema
Topics in Elementary Geometry
Springer (2008)

O. Bottema, B. Roth
Theoretical Kinematics
Dover Publications (1990)

T. Hoffmann
Discrete Differential Geometry of Curves and Surfaces
Faculty of Mathematics, Kyushu University (2009)



Lecture 2:
Discrete Curves and Torses



Smooth and discrete curves

Smooth curve:

γ : I ⊂ R→ Rd, u 7→ γ(u),

Regularity condition:

dγ
du

(u) = γ̇(u) 6= 0

Discrete curve:

γ : I ⊂ Z→ Rd, i 7→ γ(i) =: γi,

Regularity condition:

δγi := γi+1 − γi 6= 0

Shift notation:

γi ≈ γ, γi+1 ≈ γ1, γi−1 ≈ γ−1,

for example δγ = γ1 − γ



Smooth and discrete curves

Smooth curve:

γ : I ⊂ R→ Rd, u 7→ γ(u),

Regularity condition:

dγ
du

(u) = γ̇(u) 6= 0

Discrete curve:

γ : I ⊂ Z→ Rd, i 7→ γ(i) =: γi,

Regularity condition:

δγi := γi+1 − γi 6= 0

Shift notation:

γi ≈ γ, γi+1 ≈ γ1, γi−1 ≈ γ−1,

for example δγ = γ1 − γ



Example
Discuss the regularity of

γ(t) =

(
t − sin t
1 − cos t

)

Solution

γ̇(t) =

(
1 − cos t

sin t

)
= 0 ⇐⇒ t = 2kπ, k ∈ Z



Example
Derive a parametrization of the discrete cycloid and discuss its
regularity.

Solution

γk =

k∑
l=0

(1 − e−il 2π
n ) =

k∑
l=0

((
1
0

)
−

(
cos 2lπ

n
sin 2lπ

n

))

γk − γk−1 = 1 − e−ik 2π
n = 0 ⇐⇒ k

n
∈ Z



Tangent, principal normal, and bi-normal

ϕi

ti−1

ti−1

ti
ti+1

ni−1

ni ni+1

bi−1

bi

bi+1

γi−1

γi
γi+1

tangent vector t := δγ/‖δγ‖
normal vector I n ⊥ t,

I ‖n‖ = 1,
I n parallel to γ−1 ∨ γ∨ γ1,
I same orientation of t−1 × t and t× n

binormal vector b := t× n discrete-frenet-frame.cg3 discrete-frenet-frame.3dm



Tangent, principal normal, and bi-normal

ϕi

ti−1

ti−1

ti
ti+1

ni−1

ni ni+1

bi−1

bi

bi+1

γi−1

γi
γi+1

Definition
The Frenet-frame is the orthonormal frame with origin γ and
axis vectors t, n, b.



Tangent, principal normal, and bi-normal

ϕi

ti−1

ti−1

ti
ti+1

ni−1

ni ni+1

bi−1

bi

bi+1

γi−1

γi
γi+1

Osculating plane: incident with γ, orthogonal to b

Normal plane: incident with γ, orthogonal to t

Rectifying plane: incident with γ, orthogonal to n



Smooth and discrete curvature

Smooth curvature:
Infinitesimal change of tangent direction with respect to arc
length:

κ(t) =
‖γ̇(t)× γ̈(t)‖
‖γ̇(t)‖3

Discrete curvature:

κ :=
sinϕ

s
where ϕ = ^(t−1, t), s = ‖γ1 − γ‖

I Assume ϕ ∈ [0, π2 ] or ϕ ∈ [−π2 , π2 ] (in case of d = 2).
I We will later encounter different notions of curvature.



Smooth and discrete torsion

Smooth torsion: Change of bi-normal direction with respect to
arc length (measure of “planarity”):

τ(t) =
〈γ̇(t)× γ̈(t), ...

γ(t)〉
‖γ̇(t)× γ̈(t)‖2

Discrete torsion:

τ :=
sinψ

s
where ψ = ^(b, b1)

I assume ψ ∈ [−π2 , π2 ]
I ψ > 0 ⇐⇒ helical displacement of Frenet frame at γ−1 to

Frenet frame at γ is a right screw
I τ ≡ 0 ⇐⇒ curve is planar



Infinite sequence of refinements

I Assume that all points γ are sampled from a smooth
curve γ(s), parametrized by arc-length.

I Consider an infinite sequence of refinements
γi = γ(εi), ε→ 0.

Curvature: κ → κ(s)
Torsion: τ→ τ(s)

Frenet frame: t→ t(s) = γ̇(s)
‖γ̇(s)‖ , n→ n(s), b→ b(s)



The fundamental theorems of curve theory

Theorem
Curvature κ(s) and torsion τ(s) as functions of the arc length
determine a space curve up to rigid motion.

Proof.
Existence and uniqueness of an initial value problem for a
system of partial differential equations.

Theorem
The three functions

I κ : Z→ [0, π2 ] (curvature),
I τ : Z→ [−π2

π
2 ] (torsion), and

I s : Z→ R+ (arc-length)

uniquely determine a discrete space curve up to rigid motion.

Proof.
Elementary construction.



The fundamental theorems of curve theory

Theorem
Curvature κ(s) and torsion τ(s) as functions of the arc length
determine a space curve up to rigid motion.

Proof.
Existence and uniqueness of an initial value problem for a
system of partial differential equations.

Corollary
The two functions

I κ : Z→ [−π2 , π2 ] (curvature) and
I s : Z→ R+ (arc-length)

determine a discrete planar curve.



Discrete Frenet-Serret equations

t − t−1 = (1 − cosϕ) t + sinϕ n =⇒
t − t−1

s
=

1 − cosϕ
s

t +κ n

1 − cosϕ
s

=
sinϕ

s
· tan

ϕ

2
= κ tan

ϕ

2
→ 0

t ′(s) :=
dt
ds

(s) = lim
ε→0

t − t−1

s
= lim
ε→0

κ n = κ(s)n(s)



Discrete Frenet-Serret equations

b1 − b = (cosψ− 1) b − sinψ n =⇒
b1 − b

s
=

cosψ− 1
s

− τ n

cosψ− 1
s

= −
sinψ

s
· tan

ψ

2
= −τ · tan

ψ

2
→ 0

b ′(s) :=
db
ds

(s) = lim
ε→0

b1 − b
s

= lim
ε→0

−τn = −τ(s)n(s).



Smooth Frenet-Serret equations

t ′(s) = κ(s)n(s), b ′(s) = −τ(s)n(s) =⇒

n ′(s) :=
dn
ds

(s) = −
d(t× b)

ds
(s)

= −t ′(s)× b(s) − t(s)× b ′(s)

= −κ(s)n(s)× b(s) + t(s)× τ(s)n(s)
= −κ(s)t(s) + τ(s)b(s).

 t ′

n ′

b ′

 =

 0 κ 0
−κ 0 τ

0 −τ 0

 ·
 t

n
b





Discrete torses

Definition
A discrete torse is a map T from Z to
the space of planes in R3.

discrete-screw-torse.3dm

rulings: ` = T−1 ∩ T

edge of regression: γ = T−1 ∩ T ∩ T1

I ` is an edge of γ
I ` and `1 intersect
I T is osculating plane of γ

  equivalent definitions
based on planes, points,
and lines



Application: Design of closed folded strips

6-crease-torse.3dm folded-sphere.3dm



Application: Design of closed folded strips

http://www.archiwaste.org/?p=1109

Institut für Konstruktion und Gestaltung, Universität Innsbruck:
Rupert Maleczek, Eda Schaur

Archiwaste:
Guillaume Bounoure, Chloe Geneveaux

http://www.archiwaste.org/?p=1109


Literature

R. Sauer’s book contains
I the derivation of the Frenet-Serret equations as presented

here and
I a treatise on discrete torses.

R. Sauer
Differenzengeometrie
Springer (1970)



Lecture 3:
Discrete Surfaces and Line Congruences



Smooth parametrized surfaces

f : U ⊂ R2 → R3, (u, v) 7→ f (u, v)

fu × fv 6= 0 where fu :=
∂f
∂u

, fv :=
∂f
∂v

(tangent vectors to parameter lines)

Example
Discuss the regularity of the parametrized surface

f (u, v) =

cos u cos v
cos u sin v

sin u

 , (u, v) ∈ (−π2 , π2 )× (0, 2π).

regular-surface-parametrization.mw



Discrete surfaces

f : Zd → Rn, (i1, . . . , id) 7→ f (i1, . . . , id) = fi1,...,id

(fi1,...,ij+1,...,ik...,id − fi1,...,ij,...,ik...,id)× (fi1,...,ij,...,ik+1...,id − fi1,...,ij,...,ik...,id) 6= 0

f : Z2 → R3, (i, j) 7→ f (i, j) = fi,j
(fi+1,j − fij)× (fi,j+1 − fij) 6= 0

Shift notation
I τj: shift in j-th coordinate direction, that is,
τj fi1,...,ij,...,id = fi1,...,ij+1,...,id

I write f , f1, f2, f12 etc. instead of fij, τ1fij, τ2fij, τ1τ2fij etc.,
for example (fi − f )× (fj − f ) 6= 0



Surface curves

γ(t) = f (u(t), v(t))

γ̇(t) =
dγ
dt

=
∂f
∂u

du
dt

+
∂f
∂v

dv
dt

f

N

T

γ1
γ2

γ̇1γ̇1

γ̇2γ̇2

I tangents of all surface curve through a fixed surface point
f lie in the plane through f and parallel to ∂f

∂u and ∂f
∂v

I tangent plane T is parallel to ∂f
∂u and ∂f

∂v

I surface normal N is parallel to n =
∂f
∂u ×

∂f
∂v



Conjugate parametrization
Definition
A surface parametrization
f (u, v) is called a conjugate
parametrization if

fu =
∂f
∂u

, fv =
∂f
∂v

, and fuv =
∂2f
∂u∂v

are linearly dependent for
every pair (u, v).

I ?invariant under projective transformations
I ?tangents of parameter lines of one kind along one

parameter line of the other kind form a torse
I conjugate directions belong to light ray and

corresponding shadow boundary conjugate-directions.3dm

I conjugate directions with respect to Dupin indicatrix



Examples

Example
Show that the surface parametrization

f (u, v) =
1

cos u + cos v − 2

sin u − sin v
sin u + sin v
cos v − cos u


is a conjugate parametrization. conjugate-parametrization.mw

Solution

1 with(LinearAlgebra):
2 F := 1/(cos(u)+cos(v)-2) *
3 Vector([sin(u)-sin(v), sin(u)+sin(v), cos(v)-cos(u)]):
4 Fu := map(diff, F, u): Fv := map(diff, F, v):
5 Fuv := map(diff, Fu, v):
6 Rank(Matrix([Fu, Fv, Fuv]));



Examples

Example
Assume that the rational bi-quadratic tensor-product
Bézier-surface

f (u, v) = f (u, v) =

∑2
i=0

∑2
j=0 wijpijB2

i (u)B
2
j (v)∑2

i=0
∑2

j=0 wijB2
i (u)B

2
j (v)

defines a conjugate parametrization. Show that in this case the
four sets of control points

{p00, p01, p11, p10}, {p01, p02, p12, p11},

{p10, p11, p21, p20}, {p11, p12, p22, p21}

are necessarily co-planar.



Examples

Solution

I w00 fu(0, 0) = 2w10(p10 − p00),
w00 fv(0, 0) = 2w01(p01 − p00)

I 4w2
00 fuv(0, 0) =

w00w11(p11 − p00) − w01w10((p01 − p00) + (p10 − p00))



Discrete conjugate nets

Definition
A discrete surface f : Zd → Rn

is called a discrete conjugate
surface (or a conjugate net), if
every elementary quadrilateral
is planar, that is, if the three
vectors

fi − f , fj − f , fij − f

are linearly dependent for
1 6 i < j 6 d.

I ?invariant under projective transformations
I ?edges in one net direction along thread in other net

direction form a discrete torse



Analytic description of conjugate nets

fij = f + cji(fi − f ) + cij(fj − f ), cji, cij ∈ R

Construction of a conjugate net f from

1. values of f on the coordinate axes of Zd and

2. d(d − 1) scalar functions cji, cij : Zd → R
conjugate-net-cg3

Example
For which values of cji and cij is the quadrilateral f f1 f12 f2

1. convex,

2. embedded?



Solution
By an affine transformation, the situation
is equivalent to

f = (0, 0), fi = (1, 0), fj = (0, 1).

Then the fourth vertex is fij = (cji, cij).
The quadrilateral is

I convex if cji, cij > 0 and
cji + cij > 1.

I embedded if
I cji + cij > 1 or
I cji, cij > 0 or
I cji = 0, cij > 1 or
I cij = 0, cji > 1 or
I cji, cij < 0.

f fi

fj

convex embedded



The basic 3D system

Theorem
Given seven vertices f , f1, f2, f3, f12, f13, and f23 such that each
quadruple f fi fj fij is planar there exists a unique point fijk such that
each quadruple fi fij fik fijk is planar.

Proof.

I The initially given vertices lie in a three-space.
I The point f123 is obtained as intersection of three planes in

this three-space.



3D consistency of a 2D system

f000f000

f100f100

f010f010

f001f001 f011f011

f101f101

f110f110

f111f111



4D consistency of a 3D system

f0000f0000

f0001f0001

f0010f0010

f0100f0100

f1000f1000

f0011f0011

f0101f0101

f1001f1001

f0110f0110

f1010f1010

f1100f1100

f0111f0111

f1011f1011

f1101f1101

f1110f1110

f1111f1111



4D consistency of a 3D system
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4D consistency of a 3D system
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4D consistency of a 3D system

f0000f0000

f0001f0001

f0010f0010

f0100f0100

f1000f1000

f0011f0011

f0101f0101

f1001f1001

f0110f0110

f1010f1010

f1100f1100

f0111f0111

f1011f1011

f1101f1101

f1110f1110

f1111f1111



4D consistency of conjugate nets

Theorem
The 3D system governing discrete conjugate nets is 4D consistent.

Proof.
More-dimensional geometry.

Corollary
The 3D system governing discrete conjugate nets is nD consistent.

Proof.
General result of combinatorial nature on 4D consistent 3D
systems.



Quadric restriction of conjugate nets

Theorem
Given seven vertices f , f1, f2, f3, f12, f13, and f23 on a quadric Q such
that each quadruple f fi fj fij is planar, there exists a unique point
fijk ∈ Q such that each quadruple fi fij fik fijk is planar.

circular-net

Lemma
Given seven generic points f , f1, f2, f3, f12, f13, f23 in three space there
exists an eighth point f123 such that any quadric through f , f1, f2, f3,
f12, f13, f23 also contains f123.
Proof.

I Quadric equation: [1, x] ·Q · [1, x] = 0 with Q ∈ R4×4,
symmetric, unique up to constant factor

I Quadrics through f , . . . f23: λ1Q1 + λ2Q2 + λ3Q3 = 0
(solution system of seven linear homogeneous equations)

I f123 = Q1 ∩Q2 ∩Q3 \ {f , . . . f23}



Quadric restriction of conjugate nets

Theorem
Given seven vertices f , f1, f2, f3, f12, f13, and f23 on a quadric Q such
that each quadruple f fi fj fij is planar, there exists a unique point
fijk ∈ Q such that each quadruple fi fij fik fijk is planar.

circular-net

Proof.
I The 3D systems determines fijk uniquely.
I The pair of planes f ∨ fi ∨ fj ∨ fij and fk ∨ fik ∨ fjk is a

(degenerate) quadric through the initially given points.
I Three quadrics of this type intersect in fijk.



The meaning of quadric restriction

Conjugate nets in quadric models of geometries:
I line geometry (Plücker quadric)
I geometry of SE(3) (Study quadric)
I geometry of oriented spheres (Lie quadric)

Conjugate nets in intersection of quadrics:
I geometry of SE(3) (intersection of six quadrics in R12)

Specializations of conjugate nets:
I circular nets
I . . .



The meaning of 3D consistency



Literature

R. Sauer
Differenzengeometrie
Springer (1970)

A. I. Bobenko, Yu. B. Suris
Discrete Differential Geometrie. Integrable Structure
American Mathematical Society (2008)



Numeric computation of conjugate nets
Contradicting aims

I planarity
I fairness
I closeness to given surface

Planarity criteria
I α+β+ γ+ δ− 2π = 0

(planar and convex)
I distance of diagonals
I det(a, aj, b) = · · · = 0,

(planar, avoid singularities)
I minimize a linear combination of

I fairness functional and
I closeness functional

subject to planarity constraints

α β

γδ

a

b

aj

bi

f fi

fj
fij



Literature

Liu Y., Pottmann H., Wallner J., Yang Y.-L., Wang W.
Geometric Modeling with Conical and Developable
Surfaces
ACM Transactions on Graphics, vol. 25, no. 3, 681–689.

Zadravec M., Schiftner A., Wallner J.
Designing quad-dominant meshes with planar faces.
Computer Graphics Forum 29/5 (2010), Proc. Symp.
Geometry Processing, to appear.



Asymptotic parametrization

Definition
A surface parametrization f (u, v) is called an asymptotic
parametrization if

∂f
∂u

,
∂f
∂v

,
∂2f
∂u2 and

∂f
∂u

,
∂f
∂v

,
∂2f
∂v2

are linearly dependent for every pair (u, v).

Asymptotic lines
I exist only on surfaces with hyperbolic curvature
I ?osculating plane of parameter lines is tangent to surface

(rectifying plane contains surface normal)
I intersection curve of surface and rectifying plane of

parameter lines has an inflection point
I invariant under projective transformations



An Example

Example
Show that the surface parametrization

f (u, v) =

 u
v

uv


is an asymptotic parametrization.

Solution
We compute the partial derivative vectors:

fu = (1, 0, v), fv = (0, 1, u), fuu = fvv = (0, 0, 0).

Obviously, fuu and fvv are linearly dependent from fu and fv.



A pseudosphere

Wunderlich W.
Zur Differenzengeometrie
der Flächen konstanter
negativer Krümmung
Österreich. Akad. Wiss.
Math.-Naturwiss. Kl. S.-B.
II, vol. 160, no. 2, 39–77,
1951.

asymptotic-pseudosphere.3dm



Discrete asymptotic nets

Definition
A discrete surface f : Zd → R3 is called a discrete asymptotic
surface (or an asymptotic net), if there exists a plane through f
that contains all vectors

fi − f , f−i − f .

for 1 6 i 6 d (planar “vertex stars”).

I well-defined tangent plane T and surface normal N at
every vertex f

I discrete partial derivative vector (fi − f ) + (f − f−i) is
parallel to T



Examples

A sportive example
http://www.flickr.com/photos/laffy4k/202536862/
http://www.flickr.com/photos/bekahstargazing/436888403/

http://www.flickr.com/photos/nataliefranke/2785575144/

A floristic example
blumenampel-1.jpg blumenampel-2.jpg

An architectural example
http://www.flickr.com/photos/preef/4610086160/

http://www.flickr.com/photos/laffy4k/202536862/
http://www.flickr.com/photos/bekahstargazing/436888403/
http://www.flickr.com/photos/nataliefranke/2785575144/
http://geometrie.uibk.ac.at/schroecker/difference-geometry/img/blumenampel-1.jpg
http://geometrie.uibk.ac.at/schroecker/difference-geometry/img/blumenampel-2.jpg
http://www.flickr.com/photos/preef/4610086160/


Properties of asymptotic nets

I ?invariant under projective transformations
I ?asymptotic lines have osculating planes tangent to the

surface

Asymptotic nets in higher dimension

I straightforward extension to maps f : Zd → Rn

I nonetheless only asymptotic nets in a three-space



Construction of 2D asymptotic nets

I Prescribe values of f on coordinate axes such that all
vectors

τi f0,0 − f0,0, i ∈ {1, 2}

are parallel to a plane.
I f1,1 lies in the intersection of the two planes

f0,0 ∨ f1,0 ∨ f2,0 and f0,0 ∨ f0,1 ∨ f0,2

(one degree of freedom)
I inductively construct remaining values of f (one degree of

freedom per vertex)

asymptotic-net.cg3



Construction of asymptotic nets in dimension three

I Prescribe values of f on coordinate axes such that all
vectors

τi f0,0,0 − f0,0,0, i ∈ {1, 2, 3}

are parallel to a plane.
I Complete the points

τiτj f0,0,0, i, j ∈ {1, 2, 3}; i 6= j

(one degree of freedom per vertex).
I three ways to construct f1,1,1 from the already constructed

values =⇒ three straight lines

Do these lines intersect?
Are asymptotic nets governed by a 3D system?



Möbius tetrahedra

Definition
Two tetrahedra a0 a1 a2 a3 and b0 b1 b2 b3 are called Möbius
tetrahedra, if

ai ∈ bj ∨ bk ∨ bl and bi ∈ aj ∨ ak ∨ al (?)

for all pairwise different i, j, k, l ∈ {0, 1, 2, 3}.

(Points of one tetrahedron lie in corresponding planes of the
other tetrahedron.) moebius-tetrahedra.cg3

Theorem (Möbius)
Seven of the eight incidence relations (?) imply the eighth.



Möbius tetrahedra

Proof.

1. Notation: Ai = aj ∨ ak ∨ al,
Bi = bj ∨ bk ∨ bl

2. Choose a0, B0 with a0 ∈ B0.

3. Choose a1, a2, a3 (general
position) A0, A1, A2, A3.

4. Choose b1 ∈ B0 ∩A1,
b2 ∈ B0 ∩A2, b3 ∈ B0 ∩A3  
B1 = b2 ∨ b3 ∨ a1,
B2 = b1 ∨ b3 ∨ a2,
B3 = b1 ∨ b2 ∨ a3.

5. b0 := B1 ∩ B2 ∩ B3, Claim: b0 ∈ A0

(X by Pappus’ Theorem).
pappus-theorem.ggb

a0

a1

a2a2

a3

b0

b1b1

b2

b3

A0

B0



Construction of asymptotic nets in dimension three (II)

I Asymptotic net ∼ pairs (f , T) of points f and planes T
with f ∈ T; defining property

f ∈ τi T and τi f ∈ T.

I Partition the vertices of the elementary hexahedron of an
asymptotic net into two vertex sets of tetrahedra:

a0 = f0,0,0, a1 = f1,1,0, a2 = f1,0,1, a3 = f0,1,1,

b0 = f1,1,1, b1 = f0,0,1, b2 = f0,1,0, b3 = f1,0,0.

I Construction of the vertices fijk with (i, j, k) 6= (1, 1, 1)
yields the configuration of Möbius’ Theorem
=⇒ construction of f111 without contradiction.



Analytic description of asymptotic nets

Asymptotic net: f : Zd → R3

Lelieuvre vector field: n : Zd → R3 such that
1. n ⊥ T and
2. fi − f = ni × n

I vector ni can be constructed uniquely from f , n, fi
(three linear equations)

I vector nij can be constructed via
I f , n, fi  ni; fij  nij
I f , n, fj  nj; fij  nij

Do these values coincide?



An auxiliary result

Lemma (Product formula)
Consider a skew quadrilateral f , fi, fij,
fj and vectors n, ni, nij, nj such that

fi − f = αni × n, fj − f = βnj × n,

fij − fj = αjnj × nj, fij − fi = βinij × ni.

Then ααj = ββi.

Proof.
I (fi − f )T · nj = α(ni × n)T · nj = −α(nj × n)T · ni

I (fj − f )T · ni = β(nj × n)T · ni

I −
α

β
=

(fi − f )T · nj

(fj − f )T · ni
=

(fi − f + f − fj)T · nj

(fj − f + f − fi)T · ni
=

(fi − fj)T · nj

(fj − fi)T · ni



An auxiliary result

Lemma (Product formula)
Consider a skew quadrilateral f , fi, fij,
fj and vectors n, ni, nij, nj such that

fi − f = αni × n, fj − f = βnj × n,

fij − fj = αjnj × nj, fij − fi = βinij × ni.

Then ααj = ββi.

Proof.

I −
α

β
=

(fi − f )T · nj

(fj − f )T · ni
=

(fi − f + f − fj)T · nj

(fj − f + f − fi)T · ni
=

(fi − fj)T · nj

(fj − fi)T · ni

I −
αj

βi
= · · · =

(fi − fj)T · ni

(fi − fj)T · nj

I =⇒ α

β
=
βi

αj



Existence and uniqueness

Theorem
The Lelieuvre normal vector field n of an asymptotic net f is
uniquely determined by its value at one point.

Proof.
Uniqueness X
Existence

I Product formula for normal vector fields: ααj = ββi.
I Three of the values α, αj, β, βi equal 1 =⇒ all four

values equal 1.
I The Lelieuvre normal vector field is characterized by
α = αj = β = βi = 1.

I Both construction of nij result in the same value.



Relation between two Lelieuvre normal vector fields

Theorem
Suppose that n and n ′ are two Lelieuvre normal vector fields to the
same asymptotic net. Then there exists a value α ∈ R such that

n(z) =

αn(z) if z1 + · · ·+ zd is even,
α−1n(z) if z1 + · · ·+ zd is odd.

Proof. X



The discrete surface of Lelieuvre normals

What are the properties of the discrete net n : Zd → R3?

I fij − f = fij − fi + fi − f = nij × ni + ni × n
I fij − f = fij − fj + fj − f = nij × nj + nj × n
I =⇒ (nij − n)× (ni − nj) = 0
I =⇒ nij − n = aij(nj − ni) where aij ∈ R

Conclusion:
I The net n : Zd → R3 is conjugate.
I Every fundamental quadrilateral has parallel diagonals

(this is called a “T-net”).



T-nets

Defining equation:

yij − y = aij(yj − yi) where aij ∈ R

I aij = −aji

I yij − y = (1 + cji)(yi − y) + (1 + cij)(yj − y) =⇒
I cij + cji + 2 = 0 (T-net condition)
I aij = cij + 1 (relation between coefficients)



Elementary hexahedra of T-nets

Theorem
Consider seven points y, y1, y2, y3, y12, y13, y23 of a combinatorial
cube such that the diagonals of

y y1 y12 y2, y y1 y13 y3, and y y2 y23 y3

are parallel. Then there exists a unique point y123 such that also the
diagonals of

y1 y12 y123 y13, y2 y12 y123 y23, and y3 y13 y123 y23

are parallel.

Corollary
T-nets are described by a 3D system. They are nD consistent.



Elementary hexahedra of T-nets

Proof.

I yij − y = aij(yj − yi) =⇒
τiyjk = (1 + (τiajk)(aij + aki))yi − (τiajk)aijyj − (τiajk)akiyk

I Six linear conditions for three unknowns τiajk:

1 + (τ1a23)(a12 + a31) = −(τ2a31)a12 = −(τ3a12)a31

1 + (τ2a31)(a23 + a12) = −(τ3a12)a23 = −(τ1a23)a12

1 + (τ2a30)(a23 + a02) = −(τ3a02)a23 = −(τ0a23)a02

I Unique solution:

τ1a23

a23
=
τ2a31

a31
=
τ3a12

a12
=

1
a12a23 + a23a31 + a31a12



Asymptotic nets from T-nets

Theorem
An asymptotic net is uniquely defined (up to translation) by a
Lelieuvre normal vector field (a T-net).

Corollary
Asymptotic nets are nD consistent.

Question: How to construct an asymptotic net from a given
T-net n?



Discrete one forms

I graph G with vertex set V, set of directed edges ~E
I vector space W

Definition (discrete additive one-form)

I p : ~E→W is a discrete additive one-form if p(−e) = −p(e).
I p is exact if

∑
e∈Z p(e) = 0 for every cycle Z of directed

edges.

Example: p(e) = e.

Definition (discrete multiplicative one-form)

I q : ~E→ R \ 0 is a discrete multiplicative one-form if
q(−e) = 1/q(e).

I q is exact if
∏

e∈Z q(e) = 1 for every cycle Z of directed
edges.



Integration of exact forms

Theorem
Given the exact additive discrete one form p : ~E→W there exists a
function f : V →W such that p(e) = f (y) − f (x) for any e = (x, y)
in ~E. The function f is defined up to an additive constant.

Proof. X

Theorem
Given the exact multiplicative discrete one form q : ~E→ R \ 0 there
exists a function ν : V → R \ 0 such that q(e) = ν(y)/ν(x) for any
e = (x, y) in ~E. The function ν is defined up to an additive constant.



Integration of exact forms

Theorem
Given the exact additive discrete one form p : ~E→W there exists a
function f : V →W such that p(e) = f (y) − f (x) for any e = (x, y)
in ~E. The function f is defined up to an additive constant.

Proof. X

Question: How to construct an asymptotic net from a given
T-net n?

Answer: Integrate the exact one form p(i, j) = ni × nj.



Ruled surfaces and torses

Ln . . . set of lines in RPn (typically n = 3)

Definition
A ruled surface is a (sufficiently regular) map ` : R→ Ln.

Definition
A discrete ruled surface is a map ` : Z→ Ln such that
`∩ `i = ∅.

Definition
A torse is a map ` : R→ Ln such that all image lines are
tangent to a (sufficiently regular) curve.

Definition
A discrete torse is a map ` : Z→ Ln such that `∩ `i 6= ∅.

=⇒ existence of polygon of regression, osculating planes etc.



Smooth line congruences

Definition
A line congruence is a (sufficiently regular) map ` : R2 → Ln.

Examples

I normal congruence of a smooth surface: f (u, v) + λn(u, v)
where n = fu × fv.

I set of transversals of two skew lines
I sets of light rays in geometrical optics



Discrete line congruences

Definition
A discrete line congruence is a map ` : Zd → Ln such that any
two neighbouring lines ` and `i intersect.

I smooth line congruences admit special parametrizations
 different discretizations conceivable

I discretize definition considers only parametrization
“along torses”



Construction of discrete line congruences

d = 2 : X

d = 3 : The completion of an elementary hexahedron
from seven lines `, `1, `2, `3, `12, `13, `23 is
possible and unique (3D system).

d = 4 : The completion of an elementary hypercube
from 15 lines `, `i, `ij, `ijk is possible and unique
(4D consistent).

d > 4 nD consistent



Discrete line congruences and conjugate nets

Definition
The i-th focal net of a discrete line congruence ` : Zd → Ln is
defined as F(i) = `∩ `i.

Theorem
The i-th focal net of a discrete line congruence is a discrete conjugate
net.

Theorem
Given a discrete conjugate net f : Zd → Rn, a discrete line
congruence ` : Zd → Ln with the property f ∈ ` is uniquely
determined by its values at the coordinate axes in Zd.

Proof.
Given two lines `i, `j and a point fij there exists a unique line `ij
incident with fij and concurrent with `i, `j.



Discrete line congruences and conjugate nets II

Definition
The i-th tangent congruence of a discrete conjugate net
f : Z2 → RPn is defined as `(i) = f ∨ fi.

Definition
In case of d = 2 the i-th Laplace transform l(i) of a
two-dimensional discrete conjugate net is the j-th focal
congruence of its i-th tangent congruence (i 6= j).

Theorem
The Laplace transforms of a discrete conjugate net are discrete
conjugate nets.



Lecture 4:
Discrete Curvature Lines



Curvature line parametrizations

f : R2 → R3, (u, v) 7→ f (u, v)

I normal surfaces along parameter lines are torses
(infinitesimally neighbouring surface normals along
parameter lines intersect)

I fu, fv are tangent to the principal directions
I parameter lines intersect orthogonally



Discrete curvature line parametrizations

Neighboring surface normals intersect.

I circular nets
I conical nets
I principal contact element nets
I HR-congruences



Circular nets

Definition
A map f : Zd → Rn is called a
circular net or discrete
orthogonal net if all
elementary quadrilaterals are
circular.

I neighboring circle axes intersect
I discretization of conjugate parametrization



Algebraic characterization

fij = f + cji(fi − f ) + cij(fj − f ), cji, cij ∈ R
αf +αi fi +αj fj +αij fij = 0, α+αi +αj +αij = 0

(α = 1 − cij − cji, αi = cji, αj = cij, αij = −1)

Circularity condition:

α‖f‖2 +αi‖fi‖2 +αj‖fj‖2 +αij‖fij‖2 = 0 (?)

Proof.
I (?) ⇐⇒ ∀m ∈ Rn :

α‖f − m‖2 +αi‖fi − m‖2 +αj‖fj − m‖2 +αij‖fij − m‖2 = 0
I Take m as center of circum-circle C of f , fi, fj:
‖f − m‖2 = ‖fi − m‖2 = ‖fj − m‖2 = r2.

I =⇒ ‖fij − m‖ = r2 =⇒ fij ∈ C



Circularity criteria

Theorem
The four points a, b, c, d ∈ R2 lie on a
circle if and only if opposite angles in the
quadrilateral a b c d are supplementary,
that is,

α+ γ = β+ δ = π.

(immediate consequence from the
Inscribed-Angle Theorem)

α

β

γ

δ

a

b

c

d

inscribed-angle-theorem.ggb



Circularity criteria

Theorem
The four points a, b, c, d ∈ C lie on a circle (or a straight line) if and
only if

a − b
b − c

· c − d
d − a

∈ R. (?)

Proof.

I Angle between complex numbers equals argument of
their ratio: ^(a, b) = arg(a/b)

I Two complex numbers a, b have the same or
supplimentary argument ⇐⇒ a/b ∈ R.

I (?) equals
a − b
c − b

:
a − d
c − d

.

and thus states equality or supplimentary of β and δ.



Circularity criteria

Theorem
The four points a, b, c, d ∈ C lie on a circle (or a straight line) if and
only if

a − b
b − c

· c − d
d − a

∈ R. (?)

Cross-ratio criterion for circularity:

CR(a, b, c, d) =
a − c
b − c

· b − d
a − d

∈ R.

I better known
I more difficult to memorize
I similar proof (use Incident Angle Theorem)



Circularity criteria
In the following theorem, a, b, c, and d are considered as vec-
tor valued quaternions; multiplication (not commutative) and
inversion are performed in the quaternion division ring.

Theorem
The four points a, b, c, d ∈ R3 lie on a circle (or a straight line) if
and only if their cross-ratio

CR(a, b, c, d) = (a − b) ? (b − c)−1 ? (c − d) ? (d − a)−1

is real.

Proof. cross-ratio-criterion.mw



Literature

Richter-Gebert J., Orendt, Th.
Geometriekalküle
Springer 2009.

Bobenko A. I., Pinkall U.
Discrete Isothermic Surfaces
J. reine angew. Math. 475 187–208 (1996)



Two-dimensional circular nets

Defining data

I values of f on coordinate axes of Z2

I a cross-ratio on each elementary quadrilateral

Shape of the circles
The quadrilateral a b c d is circular and embedded if and only if

a − b
b − c

· c − d
d − a

< 0.

Numerical computation
Add circularity condition∑

(α+ γ− π)2 +
∑

(β+ δ− π)2 → min to optimization scheme.



Three-dimensional circular nets

Theorem
Circular nets are governed by a 3D system.

Theorem
Given seven vertices f , f1, f2, f3, f12, f13, and f23 such that each
quadruple f fi fj fij lies on a circle, there exists a unique point fijk such
that each quadruple fi fij fik fijk is a circular quadrilateral.

Proof.

I All initially given vertices lie on a sphere S.
I Claim follows from quadric reduction of conjugate nets.

Alternative: Miquel’s Six Circles Theorem



Conical nets

Definition
A map
P : Zd → {oriented planes in R3}

is called a conical net the four
planes P, Pi, Pij, Pj are tangent
to an oriented cone of
revolution.

I neighboring cone axes intersect
I discretization of conjugate parametrization



The Gauss map of conical nets

I Every plane P is described by unit normal n
and distance d to the origin.

I The map n : Zd → S2 ⊂ R3 is the Gauss map
of the conical net.

Theorem
The Gauss map is circular.

I A conical net is uniquely determined by its Gauss map
and the map d : Zd → R+.

I Conicality criterion:

(n − ni) ? (ni − nij)
−1 ? (nij − nj) ? (nj − n)−1 ∈ R.



Circular quadrilaterals

Theorem
The composition of the
reflections in two intersecting
lines is a rotation about the
intersection point through
twice the angle between the
two lines.

ϕ 2ϕ

p0

p1

p2

Theorem
The composition of reflections
in successive bisector planes of
a circular quadrilateral yields
the identity.

α

β
γ

δγ

δ α

β

a

b
c

d



Conical nets from circular nets

Theorem
Given a circular net f there exists
a two-parameter variety of conical
nets whose face planes are
incident with the vertices of f .
Any such net is uniquely
determined by one of its face
planes.

Proof.
I Generate the conical net by successive reflection in the

bisector planes of neighboring vertices of f .
I This construction produces planes of a conical net and is

free of contradictions.



Circular nets from conical nets

Theorem
Given a conical net P there exists
a two-parameter variety of
circular nets whose vertices are
incident with the face planes of P.
Any such net is uniquely
determined by one of its vertices.

Proof.
Also the composition of the reflections in successive bisector
planes of the face planes of a conical net yields the
identity.



Multidimensional consistency

Theorem
Conical nets are governed by a 3D system. They are nD consistent.

Proof.
The claim follow from the analogous statements about circular
nets and the fact that both classes of nets can be generated by
the same sequence of reflections.



Literature

A. I. Bobenko, Yu. B. Suris
Discrete Differential Geometrie. Integrable Structure
American Mathematical Society (2008)

H. Pottmann., J. Wallner
The focal geometry of circular and conical meshes
Adv. Comput. Math., vol. 29, no. 3, 249–268, 2008.



Numerical computation

Theorem (Lexell; Wallner, Liu, Wang)
Consider four unit vectors e0, e1, e2, e3 and denote the angle between
ei and ei+1 by ψi,i+1. The vectors are the directions of the edges
emanating from a vertex in a conical net if and only if

ψ01 +ψ23 = ψ12 +ψ31.

I A complete proof considering all possible cases is not
difficult but involved.

I The theorem is actually a statement about spherical
quadrilaterals with an in-circle.

I For numerical computation, add conicality condition∑
(ψ01 +ψ23 −ψ12 −ψ31)

2 → min to optimization scheme.



Literature

Lexell A. J.
Acta Sc. Imp. Petr. (1781) 6, 89–100.

Wang W., Wallner J., Lie Y.
An Angle Criterion for Conical Mesh Vertices
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HR-congruences

Definition
A discrete line congruence ` : Zd → R3 is called an
HR-congruence if the skew quadrilateral consisting of the four
lines `, `i, `ij, `j lies on a hyperboloid of revolution.

Theorem
If p is a circular net and T a conical net with p ∈ T, then the
normals of T form an HR-congruence.

Proof. Construction by reflection.



Principal contact element nets

Definition
An (oriented) contact element is a pair (p, n) consisting of a
point p and a unit vector n.

Alternatively, think of a contact element as
I a pair (p, N) (point plus oriented line),
I a pair (p, T) (point plus oriented tangent plane).

Definition
A principle contact element net is a map

(p, n) : Zd → {space of oriented contact elements}

such that any two neighboring contact elements have a
common tangent sphere.



Properties of principal contact element nets

I The normals of neighboring contact elements intersect in
the center of the tangent sphere (curvature line
discretization).

I Neighboring contact elements have a unique plane of
symmetry.



Relation to circular and conical nets

Theorem
If f is a circular net and T a
conical net such that f ∈ T, then
(f , T) is a principal contact
element net.

Proof.
Due to the construction by reflections, the intersection points
of the plane normals are at the same (oriented distance) from
the points of tangency.



Relation to circular and conical nets

Theorem
If (p, T) is a principal contact element net with face planes T, then p
is a circular net and T is a conical net.

Proof.

I Opposite contact elements of an elementary quadrilateral
correspond, in two ways, in the composition of two
reflections in planes of symmetry.

I Opposite contact elements correspond in two rotations.
I Opposite contact elements have skew normals =⇒ the

two rotations are actually identical.
I All four planes of symmetry intersect in a common line

and the composition of reflections yields the identity.



Lecture 5:
Parallel Nets, Offset Nets and Curvature



Parallel nets

Definition
Let f : Zd → Rn be a conjugate net. A conjugate net f+ : Z→Rn

is called a parallel net (or a Combescure transform of f ) if
corresponding edges are parallel.

Remark
The theory of parallel nets
and offset nets as presented
below extends to quad
meshes of arbitrary
combinatorics.



Parallel nets and line congruences

Given are a conjugate net f and a parallel net f+:

=⇒ ` = f ∨ f+ is a discrete line congruence

Given are a conjugate net f and a discrete line congruence `
with f ∈ `:
=⇒ There exists a one-parameter family f+ of parallel nets

with f+ ∈ `.
=⇒ f+ is uniquely determined by its value at one point.



Offset nets

Given:

I conjugate net f
I parallel net f+

Definition
A parallel net f+ is called a vertex/face/edge offset net if
corresponding vertices/faces/edges are at constant distance d.



The vector space of parallel nets

Theorem
All conjugate nets parallel to a given conjugate net form a vector
space over R where addition and multiplication are defined
vertex-wise:

λf : Zd → Rn, i 7→ λf (i),

f + f+ : Zd → Rn, i 7→ f (i) + f+(i).

Definition
Let f and f+ be a pair of offset nets at constant distance d.
Then the Gauss image of f+ with respect to f is defined as

s =
1
d
(f+ − f ).



The smooth Gauss map for curves

I curvature ≈ ratio of arc-lengths
of Gauss image and curve



The smooth Gauss map for surfaces

Definition
Given a smooth surface M, denote by np the oriented unit
normal in p ∈M. The Gauss map of M is the map

n : M→ S2, p 7→ np.



The smooth Gauss map for surfaces

Definition
Given a smooth surface M, denote by np the oriented unit
normal in p ∈M. The Gauss map of M is the map

n : M→ S2, p 7→ np.

Properties:
I closely related to surface curvatures
I negative derivative −dn : Tp(M)→ Tnp(S2) is called the

shape operator



The Gauss image of offset nets

Theorem
The Gauss image of a vertex/face/edge offset net is a net

I whose vertices are contained in Sd,
I whose faces circumscribe Sd,
I whose edges are tangent to Sd.



Characterization of offset-nets

Corollary
A conjugate net f admits a vertex offset net f+ if and only if it is
circular.

Proof. Assume a vertex offset f+ exists =⇒ circular Gauss
image =⇒ original net is circular (angle criterion for circu-
larity).

Construction of vertex offset nets:
Assume f is circular: vertex-offset-net.3dm

1. Prescribe one vertex of f+

2. Construct Gauss image from one vertex and known edge
directions (unambiguous; no contradictions by
circularity).

3. Construct f+ from the Gauss image (unambiguous; no
contradictions).



Characterization of offset-nets

Corollary
A conjugate net f admits a face offset net f+ if and only if it is
conical.

Proof. Assume a face offset f+ exists =⇒ conical Gauss im-
age =⇒ original net is conical (angle criterion for conicality).

Construction of face offset nets:
Assume f is conical: face-offset-net.3dm

1. Prescribe one face of f+.

2. Construct other faces by offsetting (unambiguous; no
contradictions by conicality).



Characterization of offset-nets

Definition
A conjugate net is called a Koebe net, if its edges are tangent
to the unit sphere.

Corollary
A conjugate net f admits an edge offset net f+ if and only if it is
parallel to a Koebe net s.

Proof. Construction of f+ from f and s: edge-offset-net.3dm

f+ = f + d · s



Offset nets in architecture

I fewer edges for quad dominant meshes
I quadrilateral glass panels are cheaper
I less-steel, more glass
I torsion-free nodes
I existence of face or edge offset meshes

H. Pottmann, Y. Liu, J. Wallner, A. Bobenko, W. Wang
Geometry of multi-layer freeform structures for
architecture
ACM Trans. Graphics, vol. 26, no. 3, 1–1, 2007

support-structure.3dm



Discrete line congruences with offset properties

Definition
Two discrete line congruences ` and `+ are called parallel, if
corresponding lines are parallel.
They are called offset congruences if corresponding lines are
at constant distance as well.

Remark
The edges of an edge-offset net constitute a special example of
an offset congruence with planar elementary quadrilaterals.

Remark
Offset congruences occur in architecture of folded paper
strips.



Application: Design of closed folded strips

http://www.archiwaste.org/?p=1109

Institut für Konstruktion und Gestaltung, Universität Innsbruck:
Rupert Maleczek, Eda Schaur

Archiwaste:
Guillaume Bounoure, Chloe Geneveaux

http://www.archiwaste.org/?p=1109


Offset congruences

Theorem
All line congruences parallel to a given discrete line congruence `
form a vector space. Addition and multiplication are defined via
addition and multiplication of corresponding intersection points.

Definition
The Gauss image of two offset congruences ` and `+ at
distance d is defined as

s =
1
d
(`+ − `).

Theorem
A discrete line congruence ` admits an offset congruence if and only
if it is parallel and at constant distance to a discrete line congruence
whose lines are tangent to the unit sphere S2.



Elementary quadrilaterals of the Gauss image

Problem: Given two tangents A, B of S2 find lines X which

1. intersect A and B and

2. are tangent to S2.

Solution: The locus of possible points of tangency consists of
two circles through a and b.



Bi-arcs in the plane and on the sphere

a

b
A

B

j

biarc.ggb

B

H. Pottmann, J. Wallner
Computational Line Geometry
Springer (2001)

H. Stachel, W. Fuhs
Circular pipe-connections
Computers & Graphics 12 (1988), 53–57.



Elementary quadrilaterals of the Gauss image

Theorem
Let s be the Gauss image of a pair of offset congruences. An
elementary quadrilateral of s is either

1. the elementary quadrilateral of an HR-congruence or

2. something different (yet unnamed)

Remark
The geometry of offset congruences and metric aspects of
discrete line geometry are open research questions.



Curvature of a smooth curve

γ : I ⊂ R→ R3, t 7→ γ(t),

κ(t) =
‖γ̇(t)× γ̈(t)‖
‖γ̇(t)‖3 ,

l(γ) =
∫

I
‖γ̇(t)‖dt.

c

P

Q

M
M?

t

ρ

n

k?

k

I change of tangent direction per arc-length
I inverse radius of optimally approximating circle



Steiner’s formula

I convex curve γ ⊂ R2,
arc-length s, curvature κ(s)

I offset curve γt at distance t

l(γt) = l(γ) + t
∫
γ

κ(t)dt

γ(s)

γt(s)
t

Example: A circle

l(γt) = 2(r + t)π = 2rπ+ 2tπ = l(γ) + t
∫ 2rπ

0
r−1 dϕ



Steiner type curvatures in vertices

ϕ0

ϕ1 ϕ2

ϕ3

ϕ4ϕ5

ϕ0

ϕ1 ϕ2

ϕ3

ϕ4ϕ5

ϕ0

ϕ1 ϕ2

ϕ3

ϕ4ϕ5

2 sin ϕi
2

ϕi 2 tan ϕi
2

I Assign curvature to vertices so that Steiner’s Theorem
remains true.

I The three possibilities are identical up to second order
terms:

2 sin ϕ2 = ϕ+O(ϕ3), ϕ = ϕ+O(ϕ3), 2 tan ϕ2 = ϕ+O(ϕ3).



Curvatures of a smooth surface

normal-curvature.3dm



Gaussian curvature as local area distortion

area A area A0

K ≈ A0

A



Gaussian curvature as local area distortion

area A area A0

I principal contact element net (p, n)
I Gauss image n
I discrete Gauss curvature of a face:

K =
A0

A



Local Steiner formula

Smooth surface f , offset surface ft at distance t:

dA(ft) = (1 − 2Ht + Kt2)dA(f ).

I ratio of area elements is a quadratic polynomial in the
offset distance

I coefficients depend on Gaussian curvature K and mean
curvature H

Discretization:
I compare face areas of offset nets
I use coefficients of (hopefully) quadratic polynomials



Oriented and mixed area

I n-gon P = 〈p0, . . . , pn−1〉 ⊂ R2

I oriented area

A(P) =
1
2

n∑
i=0

det(pi, pi+1) (indices modulo n)

= (p0, . . . , pn) ·A · (p0, . . . , pn)
T (quadratic form in R2n)

I associated symmetric bilinear form mixed-area-form.mw

A(P,Q) = (p0, . . . , pn) ·A · (q0, . . . , qn)
T

Remark
If P and Q are parallel, positively oriented convex polygons
then A(P, Q) equals the mixed area (known from convex
geometry) of P and Q.



Discrete Steiner formula

I principal contact element net (f , n)
I offset net ft = f + tn
I corresponding faces F, Ft, N

A(Ft) = A(F + tN) =

A(F) + 2tA(F, N) + t2A(N) = (1 − 2tH + t2K)A(F),

where

H = −
A(F, S)
A(F)

, K =
A(S)
A(F)

(discrete Gaussian and mean curvature associated to faces)



Pseudospherical principal contact element nets

Theorem
(f0, n0), (f1, n1), (f2, n2) of an elementary quadrilateral in a principal
contact element net, show that there exists precisely one vertex
(f3, n3) such that the Gaussian curvature attains a given value K.

I f3 is constrained to circle, n3 is found by reflection 
quadratic parametrizations f3(t) and n3(t)

I The condition K ·A(F) = A(S) is a quadratic polynomial
Q(t).

I One of the two zeros of Q is attained for f3 = f0, n3 = n0,
the other zero is the sought solution.



Pseudospherical principal contact element nets

Theorem
(f0, n0), (f1, n1), (f2, n2) of an elementary quadrilateral in a principal
contact element net, show that there exists precisely one vertex
(f3, n3) such that the Gaussian curvature attains a given value K.

Corollary
A pseudospherical principal contact element net (f , n) is governed by
a 2D system.

I Kinematic approach, nD consistency etc.
 ICGG 2010, CCGG 2010



Pseudospherical principal contact element nets



Literature
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Lecture 6:
Cyclidic Net Parametrization



Net parametrization

Problem:
Given a discrete structure, find a smooth parametrization that
preserves essential properties.

Examples:

I conjugate parametrization of conjugate nets
I principal parametrization of circular nets
I principal parametrization of planes of conical nets
I principal parametrization of lines of HR-congruence
I . . .



Dupin cyclides

I inversion of torus, revolute
cone or revolute cylinder

I curvature lines are circles in
pencils of planes

I tangent sphere and tangent
cone along curvature lines

I algebraic of degree four,
rational of bi-degree (2, 2)



Dupin cyclide patches as rational Bézier surfaces



Supercyclides (E. Blutel, W. Degen)

I projective transforms of Dupin cyclides (essentially)
I conjugate net of conics.
I tangent cones



Cyclides in CAGD

I surface approximation (Martin, de Pont, Sharrock 1986)
I blending surfaces (Böhm, Degen, Dutta, Pratt, . . . ; 1990er)

Advantages:
I rich geometric structure
I low algebraic degree
I rational parametrization of bi-degree (2, 2):

I curvature line (or conjugate lines)
I circles (or conics)

Dupin cyclides:
I offset surfaces are again Dupin cyclides
I square root parametrization of bisector surface



Rational parametrization (Dupin cyclides)
Trigonometric parametrization (Forsyth; 1912)

Φ : f (θ,ψ) =
1

a − c cos θ cosψ

µ(c − a cos θ cosψ) + b2 cos θ
b sin θ(a − µ cosψ)
b sinψ(c cos θ− µ)


a, c,µ ∈ R; b =

√
a2 − c2

Representation as Bézier surface

1. θ = 2 arctan u, ψ = 2 arctan v

2. u 
α ′u +β ′

γ ′u + δ ′
, v 

α ′′v +β ′′

γ ′′v + δ ′′

3. Conversion to Bernstein basis

Problem:
A priori knowledge about surface position is necessary
(also with other approaches).



Cyclides as tensor-product Bézier surfaces

Every cyclide patch has a representation as tensor-product
Bézier patch of bi-degree (2, 2):

F(u, v) =

∑2
i=0

∑2
j=0 B2

i (u)B
2
j (v)wijpij∑2

i=0
∑2

j=0 B2
i (u)B

2
j (v)wij

, Bn
k (t) =

(
n
k

)
(1 − t)n−ktk

Aims:

I elementary construction of control points pij

I geometric properties of control net
I elementary construction of weights wij

I applications to CAGD and discrete differential geometry



The corner points

1. The four corner points p00, p02, p20, and p22 lie on a circle.

Reason:
This is true for the prototype parametrizations (torus, circular
cone, circular cylinder) and preserved under inversion.



The missing edge points

2.a The missing edge-points p01, p10, p12, p21 lie in the bisector
planes of their corner points.

2.b One pair of orthogonal edge tangents can be chosen
arbitrarily.

Reason:

I The edge curves are
circles.

I No contradiction because
of circularity of edge
vertices.

Conclusion
The corner tangent planes
envelope a cone of revolution.

x

y

p00

p02

p22

p20

p01

p12

p21

p10



The central control point
3. The central control point p11 lies in all four corner tangent

planes.

Reason:
f (u, v) is conjugate parametrization ⇐⇒
fu, fv und fuv linear dependent

The quadrilaterals
I p00 p01 p10 p11,
I p01 p02 p12 p11,
I p10 p20 p21 p10,
I p12 p21 p22 p11

are planar (conjugate net).
x

y

p00

p02

p22

p20

p01

p12

p21

p10

p11



Parametrization of a circular/conical nets



Parametrization of a circular/conical nets



Parametrization of a circular/conical nets



Parametrization of a circular/conical nets



Parametrization of a circular/conical nets



Obvious properties of the control net
Concurrent lines:

I p00 ∨ p10,
I p01 ∨ p11,
I p02 ∨ p12.

Co-axial planes:
I p00 ∨ p10 ∨ p20,
I p01 ∨ p11 ∨ p21,
I p02 ∨ p12 ∨ p22.



Orthologic tetrahedra

I Non-corresponding sides
of the “x-axis tetrahedron”
and the “y-axis tetrahe-
dron” are orthogonal
(orthologic tetrahedra).

perspective-orthologic.3dm

I The four perpendiculars from the vertices of one
tetrahedron on the non-corresponding faces of the other
are concurrent.

I Orthology centers are perspective centers for a third
tetrahedron.



The control net as discrete Koenigs-net

I co-planar diagonal points:
(p00 ∨ p11)∩ (p01 ∨ p10),

(p01 ∨ p12)∩ (p02 ∨ p11),

(p10 ∨ p21)∩ (p11 ∨ p20),

(p11 ∨ p22)∩ (p12 ∨ p21).

I co-axial planes:

p00 ∨ p11 ∨ p02,

p10 ∨ p11 ∨ p12,

p20 ∨ p11 ∨ p22.

I a net of dual quadrilaterals
exists (corresponding edges
and non-corresponding
diagonals are parallel)



A0 A1

A2
A3

P0 P1

P2
P3

Quadrilaterals of vanishing mixed area
 construction of discrete minimal surfaces.

H = −
A(F, S)
A(F)



The control net of the offset surface

Rich structure comprising circular net, conical net, and three
HR congruences:

I existence of offset HR congruence
I existence of orthogonal HR congruence



The control net of the offset surface
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The weight points

I neighboring control points pi, pj

I weights wi, wj

I weight point (Farin point)

gij =
wipi + wjpj

wi + wj

g01 g21

p0, w0 = 1

p1, w1 = sin α

p2, w2 = 1

2α



The weight points

Properties of weight points

I reconstruction of ratio of weights from weight points is
possible

I points in first iteration of rational de Casteljau’s algorithm
I weight points of an elementary quadrilateral are

necessarily co-planar

g01 g21

p0, w0 = 1

p1, w1 = sin α

p2, w2 = 1

2α
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Weight points on cyclidic patches

p00

p01

p02

p10

p11

p12

p20

p21

p22

s12

s10

s01

s21

Algorithm of de Casteljau =⇒
weight points of neighboring threads are perspective.



Weight points on cyclidic patches

p00

p01

p02

p10

p11

p12

p20

p21

p22

s12

s10

s01

s21

Dupin cyclides: One blue and one red weight point can be
chosen arbitrarily.



Weight points on cyclidic patches

p00

p01

p02

p10

p11

p12

p20

p21

p22

s12

s10

s01

s21

Supercyclides: Two blue and two red weight points on neigh-
boring edges can be chosen arbitrarily.



Determination by edge threads
Given:

I two edge strips
(control points, weights, apex of tangent cone)

I missing corner point dc-construction.cg3

s21

s10 s01

s12

p00

p02

p11

p22

p20

p21

p10 p01

p12



An auxiliary result

Given are two spatial quadri-
laterals with intersecting
corresponding edges:

The intersection points points
d0, d1, d2 und d3 are coplanar.
⇐⇒

The planes spanned by corre-
sponding lines intersect in a
point.

I The Theorem is self-dual (only one implication needs to
be shown).

I If all planes intersect in a point s, the two quadrilaterals
are perspective with center s.



Dupin cyclide patches

Patch of a Dupin cyclide, bounded by four circular arcs
Construction of control points

I Choose four points p00, p02, p22, p20 on a circle
I border points p01, p10, p12, p21 lie in bisector planes of

vertex points
I choose one pair of edge tangents arbitrarily
I find missing border points by reflections
I find central control point as intersection of edge tangent

planes

dc-net.3dm



Open research questions

I (parametrization of asymptotic nets with quadric patches)
I Ck conjugate parametrization of conjugate nets
I Ck principal parametrization of circular/conical nets and

HR-congruences
I parametrization preserving key features of the underlying

net
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