Uniqueness Results for Extremal Quadrics

Minimal area conics in the elliptic plane

Matthias J. Weber
(joined work with Hans-Peter Schröcker)

Šibenik, 5.9. - 9.9.2010
(1) Sphero-conics
(2) Easy results (co-axial and concentric)
(3) A counterexample

4 The general case

- d-dimensional Euclidean space; minimal volume
- Behrend. $1937+1938, d=2$
- John. 1948, arbitrary d
- Danzer, Laugwitz and Lenz. 1957, arbitrary d
- Euclidean; quermass integrals
- Firey. 1964
- Gruber. 2008
- Euclidean; size-function with convexity/concavity property
- Schröcker 2008
- Weber and Schröcker 2010
- Computation of minimal covering cones
- Lawson. 1965
- Barequet and Elber. 2005

$$
C=\left\{x \in S^{2}: x^{T} \cdot M \cdot x=0\right\}
$$

M symmetric, indefinite matrix

Sphero-conic C

The area-function of a sphero-conic C

$$
\operatorname{area}(C)=2 \pi-\int_{-\pi}^{\pi} \sqrt{\frac{a^{2} \sin ^{2} \varphi+b^{2} \cos ^{2} \varphi}{a^{2} b^{2}+a^{2} \sin ^{2} \varphi+b^{2} \cos ^{2} \varphi}} d \varphi
$$

$$
\begin{aligned}
& C=\left\{x \in S^{2}: x^{T} \cdot M \cdot x=0\right\} \\
& a^{2}=-\nu_{3} / \nu_{2} \\
& b^{2}=-\nu_{3} / \nu_{1}
\end{aligned}
$$

The area function is strictly convex if $\nu_{3} \equiv-1$.

The area-function of a sphero-conic C

$$
\operatorname{area}(C)=2 \pi-\int_{-\pi}^{\pi} \sqrt{\frac{\nu_{1} \sin ^{2} \varphi+\nu_{2} \cos ^{2} \varphi}{-\nu_{3}+\nu_{1} \sin ^{2} \varphi+\nu_{2} \cos ^{2} \varphi}} \mathrm{~d} \varphi
$$

Idea of the proof

F bounded, compact, full-dimensional set

Assume existence of two conics with

- $F \subset C_{0}, C_{1}$ and
- area $\left(C_{0}\right)=\operatorname{area}\left(C_{1}\right)$ minimal.

Idea of the proof

Build "in-between" conics

$$
C_{\lambda}=(1-\lambda) C_{0}+\lambda C_{1}
$$

via

$$
M_{\lambda}=(1-\lambda) M_{0}+\lambda M_{1} .
$$

Show

$$
\operatorname{area}\left(C_{\lambda}\right)<\operatorname{area}\left(C_{0}\right)=\operatorname{area}\left(C_{1}\right)
$$

"Easy" uniqueness results

Co-axial sphero-conics

Concentric sphero-conics

Counterexample

C_{0}, C_{1} and C_{λ} for $\lambda=0.2,0.5,0.8$

Area of the in-between conics

Idea of proof (half-turn lemma)

Uniqueness results

General case

Minimal area conic enclosing F is unique if:

- The spherical convex hull of F contains a circle of radius $\rho>0$.
- There exists an enclosing conic of F whose area is less than $\operatorname{area}(R, \rho)$.

Uniqueness results

General case

Minimal area conic enclosing F is unique if:

- The spherical convex hull of F contains a circle of radius $\rho>0$.
- There exists an enclosing conic of F whose area is less than $\operatorname{area}(R, \rho)$.

Uniqueness results

General case

$R \approx 0.879088=\arctan \left(v_{0}^{-1 / 2}\right)$. v_{0} is the root in $[0,2]$ of

$$
\begin{aligned}
J(v) & =\int_{0}^{w} \frac{1+v-3 t^{2}}{\sqrt{1-t^{2}}} \mathrm{~d} t \\
& +\int_{w}^{1} \frac{\left(1+v-3 t^{2}\right) \sqrt{1+v}}{\sqrt{1-t^{2}} \sqrt{1+v-t^{2}}} \mathrm{~d} t
\end{aligned}
$$

with $w=\sqrt{\frac{1+v}{3}}$.

Uniqueness results

General case

Minimal area conic enclosing F is unique if:

- The spherical convex hull of F contains a circle of radius $\rho>0$.
- There exists an enclosing conic of F whose area is less than $\operatorname{area}(R, \rho)$.

