Uniqueness Results for Extremal Ellipsoids

Matthias J. Weber and Hans-Peter Schröcker

Plzeň, 29.6. - 2.7.2009
(1) Overview
(2) Uniqueness Results
(3) Counterexamples

The minimal ellipsoid that contains F, respectively the maximal ellipsoid that is contained in F, with respect to a size function f.

- Represent an ellipsoid via a symmetric matrix (possible plus a translation vector).
- Eigenvalues of this matrix correspond to the lengths of the semi-axis of the ellipoid.

Definitions

f is a size function of an ellipsoid E, if

- f is a function of the semi-axis lengths of E,
- $f\left(a^{\prime}\right)=f(a)$ for any permutation a^{\prime} of a,
- f is continuous and strictly monotone increasing in any of its arguments.
$w^{p}:\left(\nu_{1}, \ldots, \nu_{d}\right)^{T} \mapsto\left(\nu_{1}^{p}, \ldots, \nu_{d}^{p}\right)^{T}$. $(p$ is defined through the representation of E)

Essentially
$f(E)=f \circ w^{p} \circ \underbrace{e(A)}$, if the matrix A represents E.

Uniqueness Theorem

- Let $F \subset \mathbb{R}^{d}$ be a compact, full-dimensional and convex set.
- Let f be a size function.
- Let $f \circ w^{p}$ be a strictly convex (respectively concave) function on \mathbb{R}_{+}^{d} (resp. $\mathbb{R}_{\geq 0}^{d}$).

Among all ellipsoids that contain (resp. are contained in) F there exists a unique ellipsoid that is minimal (resp. maximal) with respect to f.

Conception of the proof

- Existence: continuity of $f \circ w^{p}$ and compactness of F.
- Uniqueness: Indirect: Let E_{0} and E_{1} be two minimal (respectively maximal) ellipsoids with respect to f, with $F \subset E_{0}, E_{1}$ (respectively $E_{0}, E_{1} \subset F$).
Construct an in-between ellipsoid E_{λ} and show that
- E_{λ} is smaller (respectively greater), with respect to f, than E_{0} and E_{1},
- $E_{0} \cap E_{1} \subset E_{\lambda}$ (respectively $E_{\lambda} \subset \operatorname{con}\left(E_{0}, E_{1}\right)$.

minimal ellipsoids containing F

Equation

$$
\left\{x: X^{T} \cdot M \cdot X \leq 0, X=(1, x)^{T}\right\}
$$

$$
M_{\lambda}=(1-\lambda) M_{0}+\lambda M_{1},
$$

$$
w^{-1 / 2},
$$

$E_{0} \cap E_{1} \subset E_{\lambda}$,
$f\left(E_{\lambda}\right)<f\left(E_{0}\right)=f\left(E_{1}\right)$.

minimal ellipsoids containing F

$$
\begin{aligned}
& \text { Pre-image of the unit sphere } \\
& \{x:\|R \cdot x+s\| \leq 1\}, \\
& R_{\lambda}=(1-\lambda) R_{0}+\lambda R_{1} \text { and } \\
& s_{\lambda}=(1-\lambda) s_{0}+\lambda s_{1}, \\
& w^{-1}, \\
& E_{0} \cap E_{1} \subset E_{\lambda}, \\
& f\left(E_{\lambda}\right)<f\left(E_{0}\right)=f\left(E_{1}\right) .
\end{aligned}
$$

maximal ellipsoids contained in F

Equation in dual space

$\left\{u: U^{T} \cdot N \cdot U \leq 0, U=(1, u)^{T}\right\}$,
$N_{\lambda}=(1-\lambda) N_{0}+\lambda N_{1}$,
$w^{1 / 2}$,
$E_{\lambda} \subset \operatorname{con}\left(E_{0}, E_{1}\right)$,
$f\left(E_{\lambda}\right)>f\left(E_{0}\right)=f\left(E_{1}\right)$, but only for co-axial and concentric ellipsoids E_{0} and E_{1}.

maximal ellipsoids contained in F

Image of the unit sphere
$\{P \cdot x+t:\|x\| \leq 1\}$,
$P_{\lambda}=(1-\lambda) P_{0}+\lambda P_{1}$ and
$t_{\lambda}=(1-\lambda) t_{0}+\lambda t_{1}$,
w^{1},
$E_{\lambda} \subset \operatorname{con}\left(E_{0}, E_{1}\right)$,
$f\left(E_{\lambda}\right)>f\left(E_{0}\right)=f\left(E_{1}\right)$.

Uniqueness Results

- $F \subset \mathbb{R}^{d}$, compact, full-dimensional and convex set.
- f a size function.
- The minimal ellipsoid containing F is unique if $f \circ w^{p}$ is strictly convex on \mathbb{R}_{+}^{d} for values of $p=-1 / 2$ and $p=-1$.
- The maximal ellipsoid contained in F is unique if $f \circ w^{p}$ is strictly concave on $\mathbb{R}_{\geq 0}^{d}$ for values of $p=1$ (and $p=1 / 2$ with restrictions).

Remark: If $p=-1$ and $p=1$ the extremal ellipsoids are easy to compute via convex otimization.

Counterexample for minimal ellipsoids

$f \circ w^{-1 / 2}$ is a non-convex size function.

Counterexample for maximal ellipsoids

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R},(a, b) \mapsto 4 \max \{a, b\} E\left(1-\frac{\min \{a, b\}}{\max \{a, b\}}\right) .
$$

f is the measure of the arc-length of an ellipsoid and $f \circ w^{1 / 2}$ is a non-concave function.

