Uniqueness Results for Extremal Ellipsoids

Matthias J. Weber and Hans-Peter Schröcker

Plzeň, 29.6. - 2.7.2009

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

2 Uniqueness Results

Overview

The minimal ellipsoid that contains F, respectively the maximal ellipsoid that is contained in F, with respect to a size function f.

人口 医水黄 医水黄 医水黄素 化甘油

Overview

- Represent an ellipsoid via a symmetric matrix (possible plus a translation vector).
- Eigenvalues of this matrix correspond to the lengths of the semi-axis of the ellipoid.

Definitions

f is a size function of an ellipsoid E, if

- f is a function of the semi-axis lengths of E,
- f(a') = f(a) for any permutation a' of a,
- *f* is continuous and strictly monotone increasing in any of its arguments.

 $w^p : (\nu_1, \ldots, \nu_d)^T \mapsto (\nu_1^p, \ldots, \nu_d^p)^T$. (*p* is defined through the representation of *E*)

Essentially

$$f(E) = f \circ w^{p} \circ \underbrace{e(A)}_{\text{eigenvalues}}$$
, if the matrix A represents E.

Uniqueness Results for Extremal Ellipsoids Uniqueness Results

Uniqueness Theorem

- Let $F \subset \mathbb{R}^d$ be a compact, full-dimensional and convex set.
- Let f be a size function.
- Let f ∘ w^p be a strictly convex (respectively concave) function on ℝ^d₊ (resp. ℝ^d_{≥0}).

Among all ellipsoids that contain (resp. are contained in) F there exists a unique ellipsoid that is minimal (resp. maximal) with respect to f.

Uniqueness Results for Extremal Ellipsoids Uniqueness Results Main Ideas of the proof

Conception of the proof

- Existence: continuity of $f \circ w^p$ and compactness of F.
- Uniqueness: Indirect: Let E_0 and E_1 be two minimal (respectively maximal) ellipsoids with respect to f, with $F \subset E_0, E_1$ (respectively $E_0, E_1 \subset F$).

Construct an in-between ellipsoid E_{λ} and show that

• E_{λ} is smaller (respectively greater), with respect to f, than E_0 and E_1 ,

• $E_0 \cap E_1 \subset E_\lambda$ (respectively $E_\lambda \subset \operatorname{con}(E_0, E_1)$.

Uniqueness Results

Main Ideas of the proof

minimal ellipsoids containing F

Equation $\{x \colon X^T \cdot M \cdot X \leq 0, X = (1, x)^T\},\$ $M_{\lambda} = (1 - \lambda)M_0 + \lambda M_1,\$ $w^{-1/2},\$ $E_0 \cap E_1 \subset E_{\lambda},\$ $f(E_{\lambda}) < f(E_0) = f(E_1).$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Uniqueness Results

Main Ideas of the proof

minimal ellipsoids containing F

Pre-image of the unit sphere $\{x : \|R \cdot x + s\| \le 1\},\$ $R_{\lambda} = (1 - \lambda)R_0 + \lambda R_1$ and $s_{\lambda} = (1 - \lambda)s_0 + \lambda s_1,\$ $w^{-1},\$ $E_0 \cap E_1 \subset E_{\lambda},\$ $f(E_{\lambda}) < f(E_0) = f(E_1).$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Uniqueness Results

Main Ideas of the proof

maximal ellipsoids contained in F

Equation in dual space $\{u: U^T \cdot N \cdot U < 0, U = (1, u)^T\},\$ $N_{\lambda} = (1 - \lambda)N_0 + \lambda N_1$ $w^{1/2}$. $E_{\lambda} \subset \operatorname{con}(E_0, E_1),$ $f(E_{\lambda}) > f(E_0) = f(E_1)$, but only for co-axial and concentric ellipsoids E_0 and E_1 .

・ロト・西ト・ヨト ・ヨー うへぐ

Uniqueness Results

Main Ideas of the proof

maximal ellipsoids contained in F

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uniqueness Results for Extremal Ellipsoids Uniqueness Results Main Ideas of the proof

Uniqueness Results

- \circ $F \subset \mathbb{R}^d$, compact, full-dimensional and convex set.
- f a size function.
- The minimal ellipsoid containing F is unique if $f \circ w^p$ is strictly convex on \mathbb{R}^d_+ for values of p = -1/2 and p = -1.
- The maximal ellipsoid contained in F is unique if $f \circ w^p$ is strictly concave on $\mathbb{R}^d_{\geq 0}$ for values of p = 1 (and p = 1/2 with restrictions).

Remark: If p = -1 and p = 1 the extremal ellipsoids are easy to compute via convex otimization.

Counterexamples

Counterexample for minimal ellipsoids

 $f \circ w^{-1/2}$ is a *non-convex* size function.

うせん 同一人用 (一日) (日)

Counterexamples

Counterexample for maximal ellipsoids

f is the measure of the arc-length of an ellipsoid and $f \circ w^{1/2}$ is a *non-concave* function.