Uniqueness Results for Extremal Quadrics

Matthias J. Weber
(joint work with Hans-Peter Schröcker)

Krems, 25.09. - 28.09.2011

This presentation is supported by the Austrian Science Fund (FWF) under grant P21032.

Overview and uniqueness results so far

Euclidean space

Elliptic and hyperbolic plane

Overview

F bounded, compact, fulldimensional set.
f a size function.
Give conditions on F or f, such that the f-minimal ellipsoid E enclosing F is unique.

Uniqueness results so far

- d-dimensional Euclidean space; volume
- Behrend. $1937+1938, d=2$
- John. 1948, arbitrary d
- Danzer, Laugwitz and Lenz. 1957, arbitrary d
- Gruber. 2011, arbitrary d, also surface area and intrinsic volumes
- Euclidean; quermass integrals
- Firey. 1964
- Gruber. 2008
- Euclidean; size-function with convexity/concavity property
- Schröcker 2008
- Weber and Schröcker 2010
- Computation of minimal covering cones
- Lawson. 1965
- Barequet and Elber. 2005

Main idea of the proof

1) in-between ellipsoids

Main idea of the proof

2) different representations of ellipsoids

- affine image of the unit sphere
- affine pre-image of the unit sphere
- algebraic equation
- dual algebraic equation

In all these representations an ellipsoid is described by a symmetric matrix (and a vector).

Uniqueness results in the Euclidean Space

Let $F \subset \mathbb{R}^{d}$ be a compact convex body and f a size function. Among all ellipsoids that contain, are contained in, F the f-minimal, f-maximal, ellipsoid is unique if one of the following conditions is fulfilled:

- minimal
$\triangleright f \circ w^{1}$,
$\triangleright f \circ w^{-1}$, or
$\Delta f \circ w^{-1 / 2}$
is strictly convex on $\mathbb{R}_{>}^{d}$.
- maximal
$\triangleright f \circ w^{1}$,
$\triangleright f \circ w^{-1}$, or
$\triangleright f \circ w^{1 / 2}$ (only partial results)
is strictly concave on \mathbb{R}_{\geq}^{d}.

$$
w^{p}:\left(x_{1}, \ldots, x_{d}\right)^{T} \mapsto\left(\left|x_{1}\right|^{p}, \ldots,\left|x_{d}\right|^{p}\right)^{T}
$$

Counterexample for minimal ellipsoids

$f \circ w^{-1 / 2}$ is a non-convex size function.

Counterexample for maximal ellipsoids

f is the measure of the arc-length of an ellipse and $f \circ w^{1 / 2}$ is a non-concave function.

Elliptic and hyperbolic plane

Spherical models of the elliptic and hyperbolic plane.

Difference to the Euclidean space

algebraic equation

$$
\begin{aligned}
& C=\left\{x \in \mathcal{S}: x^{T} \cdot M \cdot x=0\right\} \\
& \text { where } M \in \mathbb{R}^{3 \times 3} \text {, symmetric, } \\
& \text { indefinite Matrix }
\end{aligned}
$$

Difference to the Euclidean space

$$
\begin{aligned}
& \operatorname{area}_{\text {elliptic }}(C)=2 \pi-\int_{-\pi}^{\pi} \sqrt{\frac{a^{2} \sin ^{2} \varphi+b^{2} \cos ^{2} \varphi}{a^{2} b^{2}+a^{2} \sin ^{2} \varphi+b^{2} \cos ^{2} \varphi}} d \varphi \\
& \operatorname{area}_{\text {hyperbolic }}(C)=\int_{-\pi}^{\pi} \sqrt{\frac{a^{2} \cos ^{2} \varphi+b^{2} \sin ^{2} \varphi}{a^{2} \cos ^{2} \varphi+b^{2} \sin ^{2} \varphi-a^{2} b^{2}}} d \varphi-2 \pi
\end{aligned}
$$

Strictly convex only if ellipses are co-axial or concentric.

Main idea of the proof

1) in-between ellipses

Main idea of the proof

2) compare with concentric case

Uniqueness results in the elliptic plane

Minimal area conic enclosing F is unique if:

- The spherical convex hull of F contains a circle of radius $\rho>0$.
- There exists an enclosing conic of F whose area is less than $\operatorname{area}(R, \rho)$.

Uniqueness results in the elliptic plane

General case

$R \approx 0.879088=\arctan \left(v_{0}^{-1 / 2}\right)$. v_{0} is the root in [0,2] of

$$
\begin{aligned}
J(v) & =\int_{0}^{w} \frac{1+v-3 t^{2}}{\sqrt{1-t^{2}}} \mathrm{~d} t \\
& +\int_{w}^{1} \frac{\left(1+v-3 t^{2}\right) \sqrt{1+v}}{\sqrt{1-t^{2}} \sqrt{1+v-t^{2}}} \mathrm{~d} t
\end{aligned}
$$

with $w=\sqrt{\frac{1+v}{3}}$.

Uniqueness results in the elliptic plane

Minimal area conic enclosing F is unique if:

- The spherical convex hull of F contains a circle of radius $\rho>0$.
- There exists an enclosing conic of F whose area is less than $\operatorname{area}(R, \rho)$.

Uniqueness results in the hyperbolic plane

F bounded, compact, fulldimensional set

- Find an inscribed circle C, radius $=\varrho$.
- Find a circumscribed ellipse, $\operatorname{area}(E)=S$.

Uniqueness results in the hyperbolic plane

F bounded, compact, fulldimensional set

- Find an inscribed circle C, radius $=\varrho$.
- Find a circumscribed ellipse, $\operatorname{area}(E)=S$.
- Compute R via area $(\operatorname{Ellipse}(R, \varrho))=S$.
- $R=\frac{1}{\sqrt{\nu_{0,1}}}, \varrho=\frac{1}{\sqrt{\nu_{0,2}}}$

$$
H\left(\nu_{0,1}, \nu_{0,2}\right):=-13 \nu_{0,1}^{2}+5 \nu_{0,1} \nu_{0,2}-3 \nu_{0,1}+7 \nu_{0,2}+4 \leq 0 .
$$

Summary of the project results

- Euclidean space: arbitrary dimension, many size functions
- elliptic, hyperbolic plane: partial results
- scheme to put sufficient conditions into inequalities, independt from curvature of space, its dimension and size function

Open question

Uniqueness in the general case (elliptic and hyperbolic)?

Open question

C_{0}, C_{1} and C_{λ} for $\lambda=0.2$, 0.5, 0.8

Area of the in-between conics

Open question

Uniqueness in the general case (elliptic and hyperbolic)?

- other methods in the elliptic plane?
- in the hyperbolic plane?

