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Kinematic Mapping Based Evaluation of
Assembly Modes for Planar Four-Bar Synthesis

Hans-Peter Schröcker∗ Manfred Husty∗ J. Michael McCarthy†

This paper presents a new method to determine if two task positions used to
design a four-bar linkage lie on separate circuits of a coupler curve, known as a
“branch defect.” The approach uses the image space of a kinematic mapping to
provide a geometric environment for both the synthesis and analysis of four-bar
linkages. In contrast to current methods of solution rectification, this approach
guides the modification of the specified task positions, which means it can be used
for the complete five position synthesis problem.

Introduction

A important problem in the five-position synthesis of planar four-bar linkages is the separation
of task positions due to a discontinuous coupler curve, which is termed a “branch defect.” If
less than five positions are specified for the design problem then there is a manifold of design
solutions. Conditions that identify branching intersect this manifold to define regions of suc-
cessful solutions. This is called solution rectification, see Waldron and Stevenson (1979) and
Gupta (1980). Prentis (1991) provides a detailed presentation of the theory that underlies this
approach.

Another approach to solution rectification is to use optimization theory to design the com-
plete four-bar linkage system with branching conditions imposed as constraints on the solution,
Schaefer and Kramer (1979) and DaLio et al. (2000).

Our goal is a formulation of solution rectification in a kinematic image space introduced by
Bottema and Roth (1990) for the study of the coupler movement of four-bar linkages. Ravani
and Roth (1983) formulated the four-bar linkage synthesis problem in this image space, which
has been the focus of recent study by Hayes and Zsombor-Murray (2002), Perez and McCarthy
(2004) and Brunnthaler et al. (2005). In this image space, the coupler movement of the resulting
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four-bar linkage generates an image curve with one or two branches, reflecting the properties of
the coupler curve.

In what follows, we develop formulas that use this kinematic image space formulation directly
to evaluate directly whether two task positions lie on a single branch of the image curve of a
candidate design.

1 Four-bar motions in kinematic image space

In the projective extension PR3 of Euclidean three space we use homogeneous coordinates
[x0, x1, x2, x3]T for describing points. Homogeneous coordinates are related to Euclidean co-
ordinates (x, y, z)T via

x =
x1

x0
, y =

x2

x0
, z =

x3

x0
, if x0 6= 0. (1)

If x0 = 0, the homogeneous coordinate vector describes a point at infinity. We embed the
Euclidean plane into three-space by identifying (x, y)T with (x, y, 0)T .

The kinematic mapping κ maps the planar displacements D ∈ SE2 to points of PR3. If D is
described by

D :

1
x
y

 7→

1 0 0
a cosϕ − sinϕ
b sinϕ cosϕ

 ·
1
x
y

 , (2)

its kinematic image is the point

κ(D) = [2 cosϕ, a sinϕ− b cosϕ, a cosϕ− b sinϕ, 2 sinϕ]T . (3)

It was shown in Bottema and Roth (1990) that the kinematic image of a four-bar motion is
the intersection curve C of two hyperboloids H1,H2 ⊂ PR3. We will use these hyperboloids
for solving the problem to decide if the given poses belong to different assembly modes of a
synthesized four-bar mechanism.

The mechanism that corresponds to C has two assembly modes if and only if C has two
branches (disconnected components). The input poses lie in different assembly modes, if their
kinematic images pi lie on both branches of C. For the synthesis of four-bar mechanisms five
precision points pi are needed but in order to solve the assembly branch problem, it is sufficient
to give an algorithm for deciding whether two given precision points lie on the same branch of C.

For the rest of this paper we restrict ourselves to the case of a non-degenerate intersection
curve C. Other cases (rational or reducible intersection curve) may occur but can be eliminated
by well-known tests (Bottema and Roth, 1990, chapter 11).

2 The number of branches

The assembly mode problem is a special case of the more general question: Decide whether two
points q1, q2 on the intersection curve C of two quadrics in PR3 lie on the same or on different
branches of C. To the best of our knowledge, this problem is not yet completely solved.

The first question to answer is, whether C consists of one or two disconnected components.
This problem has been solved in (Tu et al., 2002, Theorem 5). Additionally, in this paper the
notion of affinely finite or infinite intersection curves is introduced. We recall this definition
because it is of major importance for the problem at hand.
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Definition 1. A subset S of PR3 is called affinely infinite if every plane of PR3 intersects it in
real points and affinely finite otherwise.

Theorem 1 (see Tu et al. (2002)). Let A : xTAx = 0 and B : xTBx = 0 be two real quadrics
in PR3 and assume that their intersection is not degenerate. Consider further the polynomial
f(t) = det(tA + B) of degree four.

1. The intersection curve C of A and B has two affinely finite connected components or no
real points in PR3 if and only if f(t) = 0 has four distinct real roots.

2. C has one affinely finite connected component in PR3 if and only if f(t) = 0 has two
distinct real roots and a pair of conjugate complex roots.

3. C has two affinely infinite connected components in PR3 if and only if f(t) = 0 has two
distinct pairs of complex conjugate roots.

Theorem 1 enumerates all possible cases and all of them are of relevance to the investigations
of the present paper (Figure1). The only configuration that can be excluded is that of a purely
imaginary intersection curve (because the precision points are real points of C). Note that roots
of multiplicity two or more indicate degenerate intersection curves Sommerville (1934) and will
be excluded from the following investigations.

We can use Theorem 1 with A = H1 and B = H2 to decide whether C has one or two
connected components. If only one connected component exists (two real roots) nothing else
has to be done. If two affinely finite or infinite components exist, further investigation is needed.

Theorem 1 is rather general, in fact too general for our purpose. The two hyperboloids Hi

to be intersected have rather special geometric properties that can be exploited to simplify the
criterion of Theorem 1. Instead of having to compute the roots of a polynomial of degree four,
we will show that it is sufficient to solve two explicitly given polynomials of degree two. As an
additional benefit, their roots can be used directly in the subsequent branch investigation.

We consider all Euclidean displacements that transform a certain fixed point onto a circle.
With respect to a suitable coordinate frame in the fixed system, the equation of the kinematic
image H of these transformations has the homogeneous equation

H : xT ·


0 η − b 0 −ξ + a

η − b −2 0 η + b
0 0 −2 0

−ξ + a η + b 0 −2aξ − 2bη

 · x = 0, (4)

a, b, ξ, η ∈ R.

The kinematic image is a hyperboloid whose horizontal sections z = const. are circles S(z) with
centers

m(z) = 1/2 ·

η − b+ z(ξ + a)
a− ξ + z(η + b)

2z

 (5)

and squared radii
r2(z) = 1/4 · (1 + z2)((a− ξ)2 + (b− η)2). (6)

The kinematic image of a four-bar motion is the intersection curve C of two hyperboloids H1,
H2 of that special type.
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Two circles S1(z), S2(z), each on one of the hyperboloids at a certain height, have either zero,
one or two real intersection points. We turn our attention to those values of z where S1(z)
and S2(z) have exactly one point in common because they correspond to planes that separate
branches. In order to compute them, we have to solve the circle tangent conditions

T1(z) = ‖m1(z)−m2(z)‖2 − (r1(z) + r2(z))2 = 0,

T2(z) = ‖m1(z)−m2(z)‖2 − (r1(z)− r2(z))2 = 0,
(7)

where we assume that r21(z) ≥ r22(z) for all z ∈ R. This assumption is possible without loss
of generality since the ratio of r21(z) and r22(z) is independent of z. The first circle tangent
condition characterizes exterior, the second interior tangency.

The functions r1(z) and r2(z) are irrational. Nonetheless the equations in (7) are quadratic in
z. Hence, there exist four (possibly complex) values z1, . . . , z4 such that c := T1(zi) · T2(zi) = 0.
These values determine four horizontal planes ζi : z = zi that intersect H1 and H2 in circles
S1(zi) and S2(zi) which are tangent to each other.

In the following we will show that the polynomial c is suitable to replace the polynomial of
degree four f to distinguish the cases of Theorem 1.

Theorem 2. There exists values α, β, γ, δ ∈ R with αγ−βδ 6= 0 such that the four roots of the
circle tangent conditions (7) and the four roots of the quartic polynomial g(t) = (αt + β)H1 +
(γt+ δ)H2 are identical.

Proof. We will give a computational proof of the theorem but at first we discuss the number of
solutions we have to expect.

The parameter space for solution quadruples is PC3, i.e., proportional quadruples are iden-
tified. During the subsequent computations we will often multiply homogeneous entities with
suitable factors to get rid of unwanted denominators.

Since the polynomial g(t) is obtained from f(t) in Theorem 1 by a regular parameter trans-
formation t 7→ (αt + β)(γt + δ)−1, its roots correspond to the singular quadrics in the pencil
of quadrics spanned by H1 and H2. In general, the roots of two quartic polynomials do not
correspond in a parameter transformation of this type. A necessary and sufficient criterion for
this fact is that the cross-ratio of the two quadruples of roots is the same. Therefore, there ex-
istence of a single solution quadruple implies the existence of four solutions. These correspond
to cross-ratio preserving permutations of the roots of c = T1 · T2.

We let g(z) =
∑4

i=0 giz
i and c(z) =

∑4
i=0 ciz

i. These equations have the same roots if and
only if ∆ij = gicj − gjci = 0 holds for i, j ∈ {0, . . . , 4}. Only four of the equations ∆ij = 0 can
be independent and we can restrict our attention to ∆0j = 0 for j = 1, 2, 3, 4.

Since the solution sets are homogeneous, we set δ = 1. After some computations it can be
shown that there exist constants r1, r2, g1, g2, g3, g4, f1, f2 and f3, depending on the constant
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H.-P. Schröcker et al.: Kinematic Mapping Based Evaluation. . .

coefficients ai, bi, ξi and ηi in the equations of Hi, such that

∆01 = −g1g2p+ g2
4γ(−r42 + 3r22g3β + f1β

2 + r21g3β
3)

+ g2
4α(r22g3 + f1β + 3r21g3β

2 − r41β
3),

∆02 = −f2p+ g2
4(−3r42 + 6r22g3β + f1β

2)γ2

+ 2g2
4γ(3r

2
2g3 + 2f1β + 3r21g3β

2)α+ g2
4(f1 + 6r21g3β − 3r41β

2)α2,

∆03 = g1p(g2 + 2g3) + r22g
2
4(−r22 + g3β)γ3

+ g2
4α(3r22g3 + f1β)γ2 + g2

4α
2(f1 + 3r21g3β)γ + r21g

2
4(g3 − r21β)α3,

∆04 = f3p+ g2
4(−r42γ4 + 4r22g3αγ

3 + 2f1α
2γ2 + 4r21g3α

3γ − r41α
4).

(8)

where p = −r42 + 4r22g3β + 2f1β
2 + 4r21g3β

3 − r41β4. The constants ri and gi are quadratic in ai,
bi, ξi and ηi. They are related to the constants fi by the equations

f1 = −r21r22 + 2g2
1 + 2g2

2 + 4g2g3,

f2 = r21r
2
2 − 2g2

1 + g2
2 + 2g2g3,

f3 = −r21r22 + g2
2 + 4g2g3 + 4g2

3.

(9)

The following computations are easier to carry out with a computer algebra system, if the values
for fi are not yet substituted.

Equation (8) can be solved linearly for α. Doing so, we introduce invalid solutions character-
ized by the vanishing of

B′ = g2
4(r

2
2g3 + f1β + 3r21g3β

2 − r41β
3). (10)

We substitute the solution for α in ∆02, ∆02 and ∆03 and eliminate denominators by suitable
multiplications. The resulting equations have a common polynomial factor of degree four in β.
Its roots lead to four one-parametric sets of “solutions” with α : γ = β : 1 = ti. The values ti
are the roots of det(tH1 +H2). Since these solutions are invalid, we can safely eliminate them.

The three remaining equations have a non-trivial solution if and only if the resultants

r23 = res(∆02,∆03) and r24 = res(∆02,∆04) (11)

have a non-trivial common divisor. We compute r23 and r24 and substitute the values of (9).
The greatest common divisor of r23 and r24 turns out to be of the form

gcd(r23, r24) = g6
4 ·B′6 ·B′′ (12)

where B′′ =
∑4

i=0 biz
i is the polynomial of degree four with

b0 = r42(g2 + g3)2(g2
2 − r21r

2
2) + r42g

2
1g

2
2,

b1 = −4g2
1g3r

2
1r

4
2,

b2 = r21r
2
2(−4g2

1(g
2
1 − r21r

2
2 + 2g2g3)− 2(g2 + g3)2(g2

2 − r21r
2
2)− 6g2

1g
2
2),

b3 = −4g2
1g3r

4
1r

2
2,

b4 = r41(g2 + g3)2(g2
2 − r21r

2
2) + r41g

2
1g

2
2.

(13)

Its roots lead to four valid solutions to our problem and the proof is finished.

As consequence of Theorem 1 and Theorem 2 we can state

Corollary 1. It is possible to replace f(t) by c(z) = T1(z) · T2(z) when applying Theorem 1 to
the intersection curve C of H1 and H2.
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Figure 1: The intersection curve C has two affinely finite, one branch or two affinely infinite
branches.

3 Distribution of precision points

In the preceding section we developed a criterion for deciding whether the intersection curve
C of the hyperboloids H1 and H2 consists of one or two branches. In this section we give a
criterion to decide whether two given points p1, p2 ∈ C lie on the same or different branches
of C. Thereby, the horizontal planes ζi that intersect H1 and H2 in touching circles S1(zi) and
S2(zi) play an important role.

It will be convenient to consider the z-values of horizontal planes as elements of the projective
line R = R∪∞. A closed interval of z-values is either a closed interval of R or the union of sets
(−∞, z0], [z1,∞) and {∞} (a projective interval). The value ∞ is considered to be a zero of (7)
if the leading coefficient of the respective quadratic equation vanishes.

We denote the number of real zeros of the circle tangent conditions by ψ. In order to decide
whether the points p1 and p2 lie in one connected component, we distinguish three cases (see
also Figure1:

Case 1: ψ = 2

By Corollary 1, the intersection curve C of H1 and H2 has only one connected component.
Nothing more has to be done.

Case 2: ψ = 0

By Corollary 1, C consists of two affinely infinite branches. Therefore, every real horizontal
plane intersects C in the absolute circle points at infinity and two further real points q1(z)
and q2(z), one on every branch of C. Since these points never coincide, the never lie on the
connecting line of m1(z) and m2(z). We denote the projections of mi(z) and qi(z) onto the
plane z = 0 by m′

i(z) and q′i(z). The two branches of C can be distinguished by the sign of the
determinant

det(m′
1(z)− q′i(z),m

′
2(z)− q′i(z)). (14)
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In order to decide whether the precision points p1 and p2 lie in one assembly branch we substitute
them into the determinant (14) with qi(z) = pi and z as the third coordinate of pi. If and only
if the two determinants have the same sign, the precision points lie on the same branch of C.

Case 3: ψ = 4

By Corollary 1, C consists of two affinely finite branches. A real horizontal plane intersects C
in the absolute circle points at infinity and two further points, real or complex. For reasons of
continuity, the z-values where both points are real define two disjoint intervals of R, correspond-
ing to the two branches of C. In order to decide whether p1 and p2 lie on the same branch of
C, we have to test whether their z-coordinates lie in the same projective interval.

4 Examples

In this section we illustrate the presented algorithm for making assembly mode decisions at hand
of three examples.

Example 1: One connected component

We consider the five input poses

a1 = 0.0000, b1 = 0.0000, ϕ1 = 0.0000,
a2 = 4.0276, b2 = 1.4180, ϕ2 = −2.0649,
a3 = 0.6052, b3 = 1.6476, ϕ2 = −2.6106,
a4 = 3.7734, b4 = 2.2547, ϕ2 = −2.7802,
a5 = 2.0937, b5 = 3.6112, ϕ2 = −2.3712.

Their kinematic images are

p1 = ( 0.0000, 0.0000, 0.0000)T ,

p2 = (−1.6744,−4.0810, 3.2010)T ,

p3 = (−3.6773,−1.9366, 3.3320)T ,

p4 = (−5.4731,−11.4534, 8.0568)T ,

p5 = (−2.4665,−4.3877, 5.5003)T .

A solution for the synthesis problem is the four-bar motion given by the intersection of the
hyperboloids Hi : xTHix = 0 with

H1 =


0.0000 0.1805 −0.1538 0.0126
0.1805 −0.3901 0.1898 −0.2395

−0.1538 0.1898 −0.1784 0.0000
0.0126 −0.2395 0.0000 −0.1784

 ,

H2 =


0.0000 0.2419 −0.1278 0.0832
0.2419 −0.3462 0.1984 −0.2135

−0.1278 0.1984 −0.1783 0.0000
0.0832 −0.2135 0.0000 −0.1783

 .
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The circle tangent conditions (7) read

T1(z) = 3.655946z2 − 5.893935z + 0.442217 = 0,

T2(z) = 5.119001z2 − 5.893935z + 1.905272 = 0.

T1(z) has two real solutions, T2(z) has two complex solutions

z1 = 0.078890, z2 = 1.533261,
z3,4 = 0.575692± 0.201928 · i.

Corollary 1 tells us that C has just one connected component. It contains all precision points
pi and nothing more has to be done.

Example 2: Two affinely finite components

We consider the five input poses

a1 = 0.0000, b1 = 0.0000, ϕ1 = 0.0000,
a2 = 2.7578, b2 = 1.6668, ϕ = −0.7155
a3 = 3.6447, b3 = 2.7958, ϕ = 1.8415
a4 = 4.1243, b4 = 4.9946, ϕ = −2.2893
a5 = 3.7941, b5 = 1.6313, ϕ = 2.9218.

Their kinematic images are

p1 = ( 0.0000, 0.0000, 0.0000)T ,

p2 = (−0.3738,−1.3488, 1.6904)T ,

p3 = ( 1.3153, 0.9989,−0.0163)T ,

p4 = (−2.2029,−7.0401, 7.5635)T ,

p5 = ( 9.0608, 16.3730,−5.4934)T .

A solution for the synthesis problem is the four-bar motion given by the intersection of the
hyperboloids Hi : xTHix = 0 with

H1 =


0.0000 0.2561 −0.0787 0.0044
0.2561 −0.5055 0.1533 −0.0851

−0.0787 0.1533 −0.0486 0.0000
0.0044 −0.0851 0.0000 −0.0486

 ,

H2 =


0.0000 0.1584 0.0855 0.1166
0.1584 −0.5008 0.1343 −0.2064
0.0855 0.1343 −0.0794 0.0000
0.1166 −0.2064 0.0000 −0.0794

 .
The circle tangent conditions (7) read

T1(z) = 27.9297z2 − 37.9073z + 5.4884 = 0,

T2(z) = 33.1964z2 − 37.9073z + 10.7550 = 0.

8
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They have four real solutions. In ascending order, they are

z1 = 0.164792, z2 = 0.526128,
z3 = 0.615783, z4 = 1.192447.

By Corollary 1, C has two affinely finite components. We compare the z-coordinates of the
precision points pi and find that they are either smaller than z1 or larger than z4. They lie in
the projective interval with end-points z1 and z4 through ∞. Hence, the precision points can be
reached in one assembly mode of the mechanism.

Example 3: Two affinely infinite components

We consider the five input poses

a1 = 0.0000, b1 = 0.0000, ϕ1 = 0.0000,
a2 = 4.4892, b2 = 1.2967, ϕ2 = −2.5628,
a3 = 2.9454, b3 = 1.2849, ϕ3 = −2.0002,
a4 = 3.6948, b4 = 4.6181, ϕ4 = −0.8284,
a5 = 3.1920, b5 = 2.5861, ϕ5 = 0.0993.

Their kinematic images are

p1 = ( 0.0000, 0.0000, 0.0000)T ,

p2 = (−3.3586,−8.1872, 4.4222)T ,

p3 = (−1.5577,−2.9365, 2.4735)T ,

p4 = (−0.4396,−3.1212, 2.8626)T ,

p5 = ( 0.0497,−1.2137, 1.5317)T .

A solution for the synthesis problem is the four-bar motion given by the intersection of the
hyperboloids Hi : xTHix = 0 with

H1 =


0.0000 0.1953 −0.0793 0.0107
0.1953 −0.5405 0.1128 −0.1514

−0.0793 0.1128 −0.0541 0.0000
0.0107 −0.1514 0.0000 −0.0541

 ,

H2 =


0.0000 −0.0891 0.0186 0.0859

−0.0891 −0.7017 0.2036 0.0057
0.0186 0.2036 −0.0481 0.0000
0.0859 0.0057 0.0000 −0.0481

 .
The circle tangent conditions (7) read

T1(z) = 6.838496z2 − 3.518425z + 7.564391 = 0,

T2(z) = 11.205970z2 − 3.518425z + 11.931864 = 0.

9
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They have the four complex solutions

z1,2 = 0.257251± 1.019789 · i, z3,4 = 0.156989± 1.019869 · i.

By Corollary 1, C has two affinely infinite components. In order to decide whether the input
poses p1, . . . , p5 lie on one branch, we consider the determinants det(m′

1 − p′i,m
′
2 − p′i) where

the midpoint functions m1 and m2 are evaluated at the z-coordinates of the points pi:

det
(
−1.4644 0.3875

0.1985 1.7865

)
= −2.6930,

det
(

11.1095 22.4654
−3.9843 10.4974

)
= 206.1304,

det
(

5.2477 12.4154
−3.7839 5.0159

)
= 73.3001,

det
(

4.9404 12.9443
−4.6875 5.2467

)
= 86.5980,

det
(

1.6778 6.8215
−2.8723 3.1816

)
= 24.9318.

We see that only the first determinant has a negative sign. Hence, the precision points p2, p3,
p4 and p5 lie in an assembly mode different from the assembly mode of p1.

5 Conclusion

In this paper, we exploit the circular shape of the two hyperboloids that intersect to define the
image curve of the coupler movement of a four-bar linkage in a kinematic image space. Our
Theorem 2 shows that that the condition for tangency of circles (7) can be used to classify this
image curve for a design solution. This classification identifies whether the image curve has one
or two branches, and yields formulas that allow us to determine if two task positions lie on the
same branch. Examples illustrate the use of these formulas.
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H.-P. Schröcker et al.: Kinematic Mapping Based Evaluation. . .

A. Perez and J. M. McCarthy. Clifford algebra exponentials and planar linkage synthesis equa-
tions. ASME Journal of Mechanical Design, 2004.

J. M. Prentis. The pole triangle, Burmester theory and order and branching problems II: The
branching problem. Mech. Mach. Theory, 26(1):31–39, 1991.

B. Ravani and B. Roth. Motion synthesis using kinematic mapping. In ASME J. of Mechanisms,
Transmissions, and Automation in Design, volume 105, pages 460–467, 1983.

R. S. Schaefer and S. N. Kramer. Selective precision synthesis of planar mechanisms satisfying
position and velocity constraints. Mech. Mach. Theorey, 14(3):161–170, 1979.

D. M. Y. Sommerville. Analytical Geometry of Three Dimensions. Cambridge University Press,
London, 1934.

C. Tu, W. Wang, and W. J. Classifying the morphology of the nonsingular intersection curve of
two quadric surfaces. In H. Suzuki and R. Martin, editors, Proceedings of Geometric Modeling
and Processing, Theory and Applications, pages 23–32, 2002.

K. J. Waldron and E. N. J. Stevenson. Elimination of branch, Grashof and order defects in
path-angle generation and function genereation synthesis. J. Mech. Design, 101:428–437,
1979.

11


	Four-bar motions in kinematic image space
	The number of branches
	Distribution of precision points
	Examples
	Conclusion

